本文整理汇总了Python中pylab.yticks方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.yticks方法的具体用法?Python pylab.yticks怎么用?Python pylab.yticks使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pylab
的用法示例。
在下文中一共展示了pylab.yticks方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plot(self):
"""
Plot startup data.
"""
import pylab
print("Plotting result...", end="")
avg_data = self.average_data()
avg_data = self.__sort_data(avg_data, False)
if len(self.raw_data) > 1:
err = self.stdev_data()
sorted_err = [err[k] for k in list(zip(*avg_data))[0]]
else:
sorted_err = None
pylab.barh(range(len(avg_data)), list(zip(*avg_data))[1],
xerr=sorted_err, align='center', alpha=0.4)
pylab.yticks(range(len(avg_data)), list(zip(*avg_data))[0])
pylab.xlabel("Average startup time (ms)")
pylab.ylabel("Plugins")
pylab.show()
print(" done.")
示例2: heatmap
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def heatmap(df,fname=None,cmap='seismic',log=False):
"""Plot a heat map"""
from matplotlib.colors import LogNorm
f=plt.figure(figsize=(8,8))
ax=f.add_subplot(111)
norm=None
df=df.replace(0,.1)
if log==True:
norm=LogNorm(vmin=df.min().min(), vmax=df.max().max())
hm = ax.pcolor(df,cmap=cmap,norm=norm)
plt.colorbar(hm,ax=ax,shrink=0.6,norm=norm)
plt.yticks(np.arange(0.5, len(df.index), 1), df.index)
plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns, rotation=90)
#ax.axvline(4, color='gray'); ax.axvline(8, color='gray')
plt.tight_layout()
if fname != None:
f.savefig(fname+'.png')
return ax
示例3: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plot_confusion_matrix(test_label, pred):
mapping = {1:'co2',2:'humidity',3:'pressure',4:'rmt',5:'status',6:'stpt',7:'flow',8:'HW sup',9:'HW ret',10:'CW sup',11:'CW ret',12:'SAT',13:'RAT',17:'MAT',18:'C enter',19:'C leave',21:'occu',30:'pos',31:'power',32:'ctrl',33:'fan spd',34:'timer'}
cm_ = CM(test_label, pred)
cm = normalize(cm_.astype(np.float), axis=1, norm='l1')
fig = pl.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(cm, cmap=Color.YlOrBr)
fig.colorbar(cax)
for x in range(len(cm)):
for y in range(len(cm)):
ax.annotate(str("%.3f(%d)"%(cm[x][y], cm_[x][y])), xy=(y,x),
horizontalalignment='center',
verticalalignment='center',
fontsize=9)
cm_cls =np.unique(np.hstack((test_label, pred)))
cls = []
for c in cm_cls:
cls.append(mapping[c])
pl.yticks(range(len(cls)), cls)
pl.ylabel('True label')
pl.xticks(range(len(cls)), cls)
pl.xlabel('Predicted label')
pl.title('Confusion Matrix (%.3f)'%(ACC(pred, test_label)))
pl.show()
示例4: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plot_confusion_matrix(self, matrix, labels):
if not self.to_save and not self.to_show:
return
pylab.figure()
pylab.imshow(matrix, interpolation='nearest', cmap=pylab.cm.jet)
pylab.title("Confusion Matrix")
for i, vi in enumerate(matrix):
for j, vj in enumerate(vi):
pylab.annotate("%.1f" % vj, xy=(j, i), horizontalalignment='center', verticalalignment='center', fontsize=9)
pylab.colorbar()
classes = np.arange(len(labels))
pylab.xticks(classes, labels)
pylab.yticks(classes, labels)
pylab.ylabel('Expected label')
pylab.xlabel('Predicted label')
示例5: plot_functional_map
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plot_functional_map(C, newfig=True):
vmax = max(np.abs(C.max()), np.abs(C.min()))
vmin = -vmax
C = ((C - vmin) / (vmax - vmin)) * 2 - 1
if newfig:
pl.figure(figsize=(5,5))
else:
pl.clf()
ax = pl.gca()
pl.pcolor(C[::-1], edgecolor=(0.9, 0.9, 0.9, 1), lw=0.5,
vmin=-1, vmax=1, cmap=nice_mpl_color_map())
# colorbar
tick_locs = [-1., 0.0, 1.0]
tick_labels = ['min', 0, 'max']
bar = pl.colorbar()
bar.locator = matplotlib.ticker.FixedLocator(tick_locs)
bar.formatter = matplotlib.ticker.FixedFormatter(tick_labels)
bar.update_ticks()
ax.set_aspect(1)
pl.xticks([])
pl.yticks([])
if newfig:
pl.show()
示例6: plotInFrame
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plotInFrame(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids, pred_results_dir):
PL.figure(figsize=(4.2,4.2))
data = pd.read_csv(pred_results_dir + '/old_new_kl_predicted_summaries.txt', sep='\t').fillna(-1.0)
label1, label2 = 'New 2x800x In Frame Perc', 'New 1600x In Frame Perc'
xdata, ydata = data[label1], data[label2]
PL.plot(xdata,ydata, '.', label='Synthetic between library (R=%.2f)' % pearsonr(xdata,ydata)[0], color='C0',alpha=0.15)
PL.plot(overbeek_inframes, ours_inframes, '^', label='Synthetic vs Endogenous (R=%.2f)' % pearsonr(overbeek_inframes, ours_inframes)[0], color='C1')
for (x,y,id) in zip(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids):
if abs(x-y) > 25.0: PL.text(x,y,id)
PL.plot([0,100],[0,100],'k--')
PL.ylabel('Percent In-Frame Mutations')
PL.xlabel('Percent In-Frame Mutations')
PL.legend()
PL.xticks([],[])
PL.yticks([],[])
PL.show(block=False)
saveFig('in_frame_full_scatter')
示例7: plot
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plot(self, filename=None, vmin=None, vmax=None, cmap='jet_r'):
import pylab
pylab.clf()
pylab.imshow(-np.log10(self.results[self._start_y:,:]),
origin="lower",
aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax)
pylab.colorbar()
# Fix xticks
XMAX = float(self.results.shape[1]) # The max integer on xaxis
xpos = list(range(0, int(XMAX), int(XMAX/5)))
xx = [int(this*100)/100 for this in np.array(xpos) / XMAX * self.duration]
pylab.xticks(xpos, xx, fontsize=16)
# Fix yticks
YMAX = float(self.results.shape[0]) # The max integer on xaxis
ypos = list(range(0, int(YMAX), int(YMAX/5)))
yy = [int(this) for this in np.array(ypos) / YMAX * self.sampling]
pylab.yticks(ypos, yy, fontsize=16)
#pylab.yticks([1000,2000,3000,4000], [5500,11000,16500,22000], fontsize=16)
#pylab.title("%s echoes" % filename.replace(".png", ""), fontsize=25)
pylab.xlabel("Time (seconds)", fontsize=25)
pylab.ylabel("Frequence (Hz)", fontsize=25)
pylab.tight_layout()
if filename:
pylab.savefig(filename)
示例8: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plot_confusion_matrix(self, label_test, fn_test):
fn_preds = self.clf.predict(fn_test)
acc = accuracy_score(label_test, fn_preds)
cm_ = CM(label_test, fn_preds)
cm = normalize(cm_.astype(np.float), axis=1, norm='l1')
fig = pl.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(cm)
fig.colorbar(cax)
for x in range(len(cm)):
for y in range(len(cm)):
ax.annotate(str("%.3f(%d)"%(cm[x][y], cm_[x][y])), xy=(y,x),
horizontalalignment='center',
verticalalignment='center',
fontsize=10)
cm_cls =np.unique(np.hstack((label_test,fn_preds)))
cls = []
for c in cm_cls:
cls.append(mapping[c])
pl.yticks(range(len(cls)), cls)
pl.ylabel('True label')
pl.xticks(range(len(cls)), cls)
pl.xlabel('Predicted label')
pl.title('Mn Confusion matrix (%.3f)'%acc)
pl.show()
示例9: dispersion_plot
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def dispersion_plot(text, words, ignore_case=False):
"""
Generate a lexical dispersion plot.
:param text: The source text
:type text: list(str) or enum(str)
:param words: The target words
:type words: list of str
:param ignore_case: flag to set if case should be ignored when searching text
:type ignore_case: bool
"""
try:
import pylab
except ImportError:
raise ValueError('The plot function requires the matplotlib package (aka pylab).'
'See http://matplotlib.sourceforge.net/')
text = list(text)
words.reverse()
if ignore_case:
words_to_comp = map(str.lower, words)
text_to_comp = map(str.lower, text)
else:
words_to_comp = words
text_to_comp = text
points = [(x,y) for x in range(len(text_to_comp))
for y in range(len(words_to_comp))
if text_to_comp[x] == words_to_comp[y]]
if points:
x, y = zip(*points)
else:
x = y = ()
pylab.plot(x, y, "b|", scalex=.1)
pylab.yticks(range(len(words)), words, color="b")
pylab.ylim(-1, len(words))
pylab.title("Lexical Dispersion Plot")
pylab.xlabel("Word Offset")
pylab.show()
示例10: malt_demo
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def malt_demo(nx=False):
"""
A demonstration of the result of reading a dependency
version of the first sentence of the Penn Treebank.
"""
dg = DependencyGraph("""Pierre NNP 2 NMOD
Vinken NNP 8 SUB
, , 2 P
61 CD 5 NMOD
years NNS 6 AMOD
old JJ 2 NMOD
, , 2 P
will MD 0 ROOT
join VB 8 VC
the DT 11 NMOD
board NN 9 OBJ
as IN 9 VMOD
a DT 15 NMOD
nonexecutive JJ 15 NMOD
director NN 12 PMOD
Nov. NNP 9 VMOD
29 CD 16 NMOD
. . 9 VMOD
""")
tree = dg.tree()
print tree.pprint()
if nx:
#currently doesn't work
import networkx as NX
import pylab as P
g = dg.nx_graph()
g.info()
pos = NX.spring_layout(g, dim=1)
NX.draw_networkx_nodes(g, pos, node_size=50)
#NX.draw_networkx_edges(g, pos, edge_color='k', width=8)
NX.draw_networkx_labels(g, pos, dg.nx_labels)
P.xticks([])
P.yticks([])
P.savefig('tree.png')
P.show()
示例11: graph
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def graph(text,text2=''):
pl.xticks(())
pl.yticks(())
pl.xlim(0,30)
pl.ylim(0,20)
pl.plot([x,x],[0,3])
pl.text(x,-2,"X");
pl.text(0,x,"X")
pl.text(x,x*1.7, text, ha='center', va='center',size=10, alpha=.5)
pl.text(-5,10,text2,size=25)
示例12: spikes_diagram
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def spikes_diagram(ts, gids, name, path):
"""
Function for making spike diagrams
:param ts: (list) times
:param gids: (list) global IDs of neurons
:param name: (str) name of brain part
:param path: (str) path to save results
:return: None
"""
pylab.figure()
color_marker = "."
color_bar = "blue"
color_edge = "black"
ylabel = "Neuron ID"
hist_binwidth = 5.0
location = pylab.axes([0.1, 0.3, 0.85, 0.6])
pylab.plot(ts, gids, color_marker)
pylab.ylabel(ylabel)
xlim = pylab.xlim()
pylab.xticks([])
pylab.axes([0.1, 0.1, 0.85, 0.17])
t_bins = numpy.arange(numpy.amin(ts), numpy.amax(ts), hist_binwidth)
n, bins = pylab.histogram(ts, bins=t_bins)
num_neurons = len(numpy.unique(gids))
heights = (1000 * n / (hist_binwidth * num_neurons))
# FixMe t_bins[:-1] should work without cutting the end value
pylab.bar(t_bins[:-1], heights, width=hist_binwidth, color=color_bar, edgecolor=color_edge)
pylab.yticks([int(a) for a in numpy.linspace(0.0, int(max(heights) * 1.1) + 5, 4)])
pylab.ylabel("Rate (Hz)")
pylab.xlabel("Time (ms)")
pylab.grid(True)
pylab.axes(location)
pylab.title(name)
pylab.xlim(xlim)
pylab.draw()
pylab.savefig("{0}{1}.png".format(path, name), dpi=dpi_n, format='png')
pylab.close()
示例13: simple_lineal_regression
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def simple_lineal_regression(file_path):
records = ReviewETL.load_file(file_path)
data = [[record['review_count']] for record in records]
ratings = [record['stars'] for record in records]
num_testing_records = int(len(ratings) * 0.8)
training_data = data[:num_testing_records]
testing_data = data[num_testing_records:]
training_ratings = ratings[:num_testing_records]
testing_ratings = ratings[num_testing_records:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(training_data, training_ratings)
# The coefficients
print('Coefficients: \n', regr.coef_)
print('Intercept: \n', regr.intercept_)
# The root mean square error
print("RMSE: %.2f"
% (np.mean(
(regr.predict(testing_data) - testing_ratings) ** 2)) ** 0.5)
print(
'Variance score: %.2f' % regr.score(testing_data, testing_ratings))
# Plot outputs
import pylab as pl
pl.scatter(testing_data, testing_ratings, color='black')
pl.plot(testing_data, regr.predict(testing_data), color='blue',
linewidth=3)
pl.xticks(())
pl.yticks(())
pl.show()
示例14: plotHeatMap
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plotHeatMap(data, col='KL without null', label=''):
#Compute and collate medians
sel_cols = [x for x in data.columns if col in x]
cmp_meds = data[sel_cols].median(axis=0)
samples = sortSampleNames(getUniqueSamples(sel_cols))
cell_lines = ['CHO', 'E14TG2A', 'BOB','RPE1', 'HAP1','K562','eCAS9','TREX2']
sample_idxs = [(cell_lines.index(parseSampleName(x)[0]),x) for x in getUniqueSamples(sel_cols)]
sample_idxs.sort()
samples = [x[1] for x in sample_idxs]
N = len(samples)
meds = np.zeros((N,N))
for colname in sel_cols:
dir1, dir2 = getDirsFromFilename(colname.split('$')[-1])
idx1, idx2 = samples.index(dir1), samples.index(dir2)
meds[idx1,idx2] = cmp_meds[colname]
meds[idx2,idx1] = cmp_meds[colname]
for i in range(N):
print(' '.join(['%.2f' % x for x in meds[i,:]]))
print( np.median(meds[:,:-4],axis=0))
#Display in Heatmap
PL.figure(figsize=(5,5))
PL.imshow(meds, cmap='hot_r', vmin = 0.0, vmax = 3.0, interpolation='nearest')
PL.colorbar()
PL.xticks(range(N))
PL.yticks(range(N))
PL.title("Median KL") # between %d mutational profiles (for %s with >%d mutated reads)" % (col, len(data), label, MIN_READS))
ax1 = PL.gca()
ax1.set_yticklabels([getSimpleName(x) for x in samples], rotation='horizontal')
ax1.set_xticklabels([getSimpleName(x) for x in samples], rotation='vertical')
PL.subplots_adjust(left=0.25,right=0.95,top=0.95, bottom=0.25)
PL.show(block=False)
saveFig('median_kl_heatmap_cell_lines')
示例15: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import yticks [as 别名]
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')