本文整理汇总了Python中pylab.xticks方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.xticks方法的具体用法?Python pylab.xticks怎么用?Python pylab.xticks使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pylab
的用法示例。
在下文中一共展示了pylab.xticks方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: heatmap
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def heatmap(df,fname=None,cmap='seismic',log=False):
"""Plot a heat map"""
from matplotlib.colors import LogNorm
f=plt.figure(figsize=(8,8))
ax=f.add_subplot(111)
norm=None
df=df.replace(0,.1)
if log==True:
norm=LogNorm(vmin=df.min().min(), vmax=df.max().max())
hm = ax.pcolor(df,cmap=cmap,norm=norm)
plt.colorbar(hm,ax=ax,shrink=0.6,norm=norm)
plt.yticks(np.arange(0.5, len(df.index), 1), df.index)
plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns, rotation=90)
#ax.axvline(4, color='gray'); ax.axvline(8, color='gray')
plt.tight_layout()
if fname != None:
f.savefig(fname+'.png')
return ax
示例2: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot_confusion_matrix(test_label, pred):
mapping = {1:'co2',2:'humidity',3:'pressure',4:'rmt',5:'status',6:'stpt',7:'flow',8:'HW sup',9:'HW ret',10:'CW sup',11:'CW ret',12:'SAT',13:'RAT',17:'MAT',18:'C enter',19:'C leave',21:'occu',30:'pos',31:'power',32:'ctrl',33:'fan spd',34:'timer'}
cm_ = CM(test_label, pred)
cm = normalize(cm_.astype(np.float), axis=1, norm='l1')
fig = pl.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(cm, cmap=Color.YlOrBr)
fig.colorbar(cax)
for x in range(len(cm)):
for y in range(len(cm)):
ax.annotate(str("%.3f(%d)"%(cm[x][y], cm_[x][y])), xy=(y,x),
horizontalalignment='center',
verticalalignment='center',
fontsize=9)
cm_cls =np.unique(np.hstack((test_label, pred)))
cls = []
for c in cm_cls:
cls.append(mapping[c])
pl.yticks(range(len(cls)), cls)
pl.ylabel('True label')
pl.xticks(range(len(cls)), cls)
pl.xlabel('Predicted label')
pl.title('Confusion Matrix (%.3f)'%(ACC(pred, test_label)))
pl.show()
示例3: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot_confusion_matrix(self, matrix, labels):
if not self.to_save and not self.to_show:
return
pylab.figure()
pylab.imshow(matrix, interpolation='nearest', cmap=pylab.cm.jet)
pylab.title("Confusion Matrix")
for i, vi in enumerate(matrix):
for j, vj in enumerate(vi):
pylab.annotate("%.1f" % vj, xy=(j, i), horizontalalignment='center', verticalalignment='center', fontsize=9)
pylab.colorbar()
classes = np.arange(len(labels))
pylab.xticks(classes, labels)
pylab.yticks(classes, labels)
pylab.ylabel('Expected label')
pylab.xlabel('Predicted label')
示例4: plot_barchart
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot_barchart(self, data, labels, colors, xlabel, ylabel, xticks, legendloc=1):
self.big_figure()
index = np.arange(len(data[0][0]))
bar_width = 0.25
pylab.grid("on", axis='y')
pylab.ylim([0.5, 1.0])
for i in range(0, len(data)):
rects = pylab.bar(bar_width / 2 + index + (i * bar_width), data[i][0], bar_width,
alpha=0.5, color=colors[i],
yerr=data[i][1],
error_kw={'ecolor': '0.3'},
label=labels[i])
pylab.legend(loc=legendloc, prop={'size': 12})
pylab.xlabel(xlabel)
pylab.ylabel(ylabel)
pylab.xticks(bar_width / 2 + index + ((bar_width * (len(data[0]) + 1)) / len(data[0])), xticks)
示例5: plot_functional_map
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot_functional_map(C, newfig=True):
vmax = max(np.abs(C.max()), np.abs(C.min()))
vmin = -vmax
C = ((C - vmin) / (vmax - vmin)) * 2 - 1
if newfig:
pl.figure(figsize=(5,5))
else:
pl.clf()
ax = pl.gca()
pl.pcolor(C[::-1], edgecolor=(0.9, 0.9, 0.9, 1), lw=0.5,
vmin=-1, vmax=1, cmap=nice_mpl_color_map())
# colorbar
tick_locs = [-1., 0.0, 1.0]
tick_labels = ['min', 0, 'max']
bar = pl.colorbar()
bar.locator = matplotlib.ticker.FixedLocator(tick_locs)
bar.formatter = matplotlib.ticker.FixedFormatter(tick_labels)
bar.update_ticks()
ax.set_aspect(1)
pl.xticks([])
pl.yticks([])
if newfig:
pl.show()
示例6: i1RepeatNucleotides
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def i1RepeatNucleotides(data, label=''):
merged_data = mergeWithIndelData(data)
nt_mean_percs, nts = [], ['A','T','G','C']
for nt in nts:
nt_data = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]
nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb']*100.0/nt_data['Total reads']).mean())
PL.figure(figsize=(3,3))
PL.bar(range(4),nt_mean_percs)
for i in range(4):
PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
PL.xticks(range(4),nts)
PL.ylim((0,26))
PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
PL.show(block=False)
saveFig('i1_rtp_nt_%s' % label)
示例7: plotMergedI1Repeats
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plotMergedI1Repeats(all_result_outputs, label=''):
merged_data = mergeSamples(all_result_outputs, ['I1_Rpt Left Reads - NonAmb','Total reads'], data_label='i1IndelData', merge_on=['Oligo Id','Repeat Nucleotide Left'])
nt_mean_percs, nts = [], ['A','T','G','C']
for nt in nts:
nt_data = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]
nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb Sum']*100.0/nt_data['Total reads Sum']).mean())
PL.figure(figsize=(3,3))
PL.bar(range(4),nt_mean_percs)
for i in range(4):
PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
PL.xticks(range(4),nts)
PL.ylim((0,26))
PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
PL.show(block=False)
saveFig('i1_rtp_nt')
示例8: compareMHK562lines
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def compareMHK562lines(all_result_outputs, label='', y_axis = 'Percent Non-Null Reads', data_label='RegrLines'):
dirnames = [x[1] for x in all_result_outputs]
clrs = ['silver','grey','darkgreen','green','lightgreen','royalblue','dodgerblue','skyblue','mediumpurple','orchid','red','orange','salmon']
fig = PL.figure(figsize=(6,6))
leg_handles = []
mh_lens = [3,4,5,6,7,8,9,10,11,12,13,14,15]
for mh_len, clr in zip(mh_lens,clrs):
regr_lines = [x[0][data_label][mh_len] for x in all_result_outputs]
mean_line = np.mean([x[:2] for x in regr_lines], axis=0)
leg_handles.append(PL.plot(mean_line[0], mean_line[1], label='MH Len=%d (R=%.1f)' % (mh_len,np.mean([x[2] for x in regr_lines])) , linewidth=2, color=clr )[0])
PL.xlabel('Distance between nearest ends of\nmicrohomologous sequences',fontsize=16)
PL.ylabel('Correspondng microhomology-mediated deletion\n as percent of total mutated reads',fontsize=16)
PL.tick_params(labelsize=16)
PL.legend(handles=[x for x in reversed(leg_handles)], loc='upper right')
PL.ylim((0,80))
PL.xlim((0,20))
PL.xticks(range(0,21,5))
PL.show(block=False)
saveFig('mh_regr_lines_K562')
示例9: plotInFrame
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plotInFrame(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids, pred_results_dir):
PL.figure(figsize=(4.2,4.2))
data = pd.read_csv(pred_results_dir + '/old_new_kl_predicted_summaries.txt', sep='\t').fillna(-1.0)
label1, label2 = 'New 2x800x In Frame Perc', 'New 1600x In Frame Perc'
xdata, ydata = data[label1], data[label2]
PL.plot(xdata,ydata, '.', label='Synthetic between library (R=%.2f)' % pearsonr(xdata,ydata)[0], color='C0',alpha=0.15)
PL.plot(overbeek_inframes, ours_inframes, '^', label='Synthetic vs Endogenous (R=%.2f)' % pearsonr(overbeek_inframes, ours_inframes)[0], color='C1')
for (x,y,id) in zip(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids):
if abs(x-y) > 25.0: PL.text(x,y,id)
PL.plot([0,100],[0,100],'k--')
PL.ylabel('Percent In-Frame Mutations')
PL.xlabel('Percent In-Frame Mutations')
PL.legend()
PL.xticks([],[])
PL.yticks([],[])
PL.show(block=False)
saveFig('in_frame_full_scatter')
示例10: plotKLBoxes
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plotKLBoxes(data):
cols = [x for x in data.columns if 'KL' in x and 'Class KL' not in x and 'Old' not in x and 'Conventional' not in x and 'Combined' not in x]
cols.reverse()
cols_label, max_kl = 'KL', 9
PL.figure(figsize=(4,5))
pt = data.loc[(data['Combined v Predicted KL'] > 0.75) & (data['Combined v Predicted KL'] < 0.8) & (data['Old v New KL'] > 0.75) & (data['Old v New KL'] < 0.8)]
print(pt['Old Oligo Id'])
PL.boxplot([data[col] for col in cols], positions=range(len(cols)),patch_artist=True,boxprops=dict(facecolor='C2'),medianprops=dict(linewidth=2.5, color='C1'),showfliers=False)
PL.xticks(range(len(cols)),[renameCol(x) for x in cols], rotation='vertical')
for i,col in enumerate(cols):
PL.text(i-0.15, np.median(data[col])+0.02, '%.2f' % np.median(data[col]))
PL.ylabel(cols_label)
PL.subplots_adjust(left=0.1,right=0.95,top=0.95, bottom=0.5)
PL.show(block=False)
saveFig('kl_compare_old_new_predicted_%s' % cols_label.replace(' ',''))
示例11: plotVerticalHistSummary
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plotVerticalHistSummary(all_result_outputs, label='', data_label='', y_label='', plot_label='', hist_width=1000, hist_bins=100, oligo_id_str='Oligo ID', val_str = 'Cut Rate', total_reads_str= 'Total Reads'):
datas = [x[0][data_label][0] for x in all_result_outputs]
sample_names = [shortDirLabel(x[1]) for x in all_result_outputs]
merged_data = pd.merge(datas[0],datas[1],how='inner',on=oligo_id_str, suffixes=['', ' 2'])
for i, data in enumerate(datas[2:]):
merged_data = pd.merge(merged_data, data,how='inner',on=oligo_id_str, suffixes=['', ' %d' % (i+3)])
suffix = lambda i: ' %d' % (i+1) if i > 0 else ''
xpos = [x*hist_width for x in range(len(sample_names))]
PL.figure(figsize=(12,8))
for i,label1 in enumerate(sample_names):
dvs = merged_data[val_str + suffix(i)]
PL.hist(dvs, bins=hist_bins, bottom=i*hist_width, orientation='horizontal')
PL.xticks(xpos, sample_names, rotation='vertical')
PL.ylabel(y_label)
PL.title(label)
PL.show(block=False)
PL.savefig(getPlotDir() + '/%s_%s.png' % (plot_label, label.replace(' ','_')), bbox_inches='tight')
示例12: plot
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot(self):
import pylab as plt
q_ticks_int = [self.q_dist[i] for i in self.q_ticks]
q_ticks_label = self.q_labels
for i, q in enumerate(q_ticks_label):
if q in self.translate_to_pylab:
q_ticks_label[i] = self.translate_to_pylab[q]
plt.plot(self.q_dist, self.ew_list)
plt.xticks(q_ticks_int, q_ticks_label)
for x in q_ticks_int:
plt.axvline(x, color="black")
return plt
示例13: plot
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot(self, filename=None, vmin=None, vmax=None, cmap='jet_r'):
import pylab
pylab.clf()
pylab.imshow(-np.log10(self.results[self._start_y:,:]),
origin="lower",
aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax)
pylab.colorbar()
# Fix xticks
XMAX = float(self.results.shape[1]) # The max integer on xaxis
xpos = list(range(0, int(XMAX), int(XMAX/5)))
xx = [int(this*100)/100 for this in np.array(xpos) / XMAX * self.duration]
pylab.xticks(xpos, xx, fontsize=16)
# Fix yticks
YMAX = float(self.results.shape[0]) # The max integer on xaxis
ypos = list(range(0, int(YMAX), int(YMAX/5)))
yy = [int(this) for this in np.array(ypos) / YMAX * self.sampling]
pylab.yticks(ypos, yy, fontsize=16)
#pylab.yticks([1000,2000,3000,4000], [5500,11000,16500,22000], fontsize=16)
#pylab.title("%s echoes" % filename.replace(".png", ""), fontsize=25)
pylab.xlabel("Time (seconds)", fontsize=25)
pylab.ylabel("Frequence (Hz)", fontsize=25)
pylab.tight_layout()
if filename:
pylab.savefig(filename)
示例14: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot_confusion_matrix(self, label_test, fn_test):
fn_preds = self.clf.predict(fn_test)
acc = accuracy_score(label_test, fn_preds)
cm_ = CM(label_test, fn_preds)
cm = normalize(cm_.astype(np.float), axis=1, norm='l1')
fig = pl.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(cm)
fig.colorbar(cax)
for x in range(len(cm)):
for y in range(len(cm)):
ax.annotate(str("%.3f(%d)"%(cm[x][y], cm_[x][y])), xy=(y,x),
horizontalalignment='center',
verticalalignment='center',
fontsize=10)
cm_cls =np.unique(np.hstack((label_test,fn_preds)))
cls = []
for c in cm_cls:
cls.append(mapping[c])
pl.yticks(range(len(cls)), cls)
pl.ylabel('True label')
pl.xticks(range(len(cls)), cls)
pl.xlabel('Predicted label')
pl.title('Mn Confusion matrix (%.3f)'%acc)
pl.show()
示例15: plot_word_freq_dist
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import xticks [as 别名]
def plot_word_freq_dist(text):
fd = text.vocab()
samples = fd.keys()[:50]
values = [fd[sample] for sample in samples]
values = [sum(values[:i+1]) * 100.0/fd.N() for i in range(len(values))]
pylab.title(text.name)
pylab.xlabel("Samples")
pylab.ylabel("Cumulative Percentage")
pylab.plot(values)
pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90)
pylab.show()