本文整理汇总了Python中pylab.get_cmap方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.get_cmap方法的具体用法?Python pylab.get_cmap怎么用?Python pylab.get_cmap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pylab
的用法示例。
在下文中一共展示了pylab.get_cmap方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_set_cmap
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def create_set_cmap(values, cmap_name, alpha=255):
"""
return a dict of colors corresponding to the unique values
:param values: values to be mapped
:param cmap_name: colormap name
:param alpha: color alpha
:return: dict of colors corresponding to the unique values
"""
unique_values = list(set(values))
shuffle(unique_values)
from pylab import get_cmap
cmap = get_cmap(cmap_name)
d = {}
for i in range(len(unique_values)):
d[unique_values[i]] = _convert_color_format(cmap(1.*i/len(unique_values)), alpha)
return d
示例2: draw_adjacency_graph
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def draw_adjacency_graph(adjacency_matrix,
node_color=None,
size=10,
layout='graphviz',
prog='neato',
node_size=80,
colormap='autumn'):
"""draw_adjacency_graph."""
graph = nx.from_scipy_sparse_matrix(adjacency_matrix)
plt.figure(figsize=(size, size))
plt.grid(False)
plt.axis('off')
if layout == 'graphviz':
pos = nx.graphviz_layout(graph, prog=prog)
else:
pos = nx.spring_layout(graph)
if len(node_color) == 0:
node_color = 'gray'
nx.draw_networkx_nodes(graph, pos,
node_color=node_color,
alpha=0.6,
node_size=node_size,
cmap=plt.get_cmap(colormap))
nx.draw_networkx_edges(graph, pos, alpha=0.5)
plt.show()
# draw a whole set of graphs::
示例3: __init__
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def __init__(self, cmap_name, alpha=255, levels=10):
"""
Converts continuous values into colors using matplotlib colorscales
:param cmap_name: colormap name
:param alpha: color alpha
:param levels: discretize the colorscale into levels
"""
from pylab import get_cmap
self.cmap = get_cmap(cmap_name)
self.alpha = alpha
self.levels = levels
self.mapping = {}
示例4: draw_kp
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def draw_kp(kp, img, radius=None):
"""
kp is 15 x 2 or 3 numpy.
img can be either RGB or Gray
Draws bird points.
"""
if radius is None:
radius = max(4, (np.mean(img.shape[:2]) * 0.01).astype(int))
num_kp = kp.shape[0]
# Generate colors
import pylab
cm = pylab.get_cmap('gist_rainbow')
colors = 255 * np.array([cm(1. * i / num_kp)[:3] for i in range(num_kp)])
white = np.ones(3) * 255
image = img.copy()
if isinstance(image.reshape(-1)[0], np.float32):
# Convert to 255 and np.uint8 for cv2..
image = (image * 255).astype(np.uint8)
kp = np.round(kp).astype(int)
for kpi, color in zip(kp, colors):
# This sometimes causes OverflowError,,
if kpi[2] == 0:
continue
cv2.circle(image, (kpi[0], kpi[1]), radius + 1, white, -1)
cv2.circle(image, (kpi[0], kpi[1]), radius, color, -1)
# import matplotlib.pyplot as plt
# plt.ion()
# plt.clf()
# plt.imshow(image)
# import ipdb; ipdb.set_trace()
return image
示例5: galaxy10_confusion
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def galaxy10_confusion(confusion_mat):
"""
NAME:
galaxy10_confusion
PURPOSE:
to plot confusion matrix
INPUT:
confusion_mat (ndarray): An integer 0-9
OUTPUT:
(string): Name of the class
HISTORY:
2018-Feb-11 - Written - Henry Leung (University of Toronto)
"""
import pylab as plt
conf_arr = confusion_mat.astype(int)
norm_conf = []
a = np.max(conf_arr)
for i in conf_arr:
tmp_arr = []
for j in i:
tmp_arr.append(float(j) / float(a))
norm_conf.append(tmp_arr)
fig, ax = plt.subplots(1, figsize=(10, 10.5), dpi=100)
fig.suptitle("Confusion Matrix for Galaxy10 trained by astroNN", fontsize=18)
ax.set_aspect(1)
ax.imshow(np.array(norm_conf), cmap=plt.get_cmap('Blues'), interpolation='nearest')
width, height = conf_arr.shape
for x in range(width):
for y in range(height):
ax.annotate(str(conf_arr[x][y]), xy=(y, x),
horizontalalignment='center',
verticalalignment='center')
alphabet = '0123456789'
plt.xticks(range(width), alphabet[:width], fontsize=20)
plt.yticks(range(height), alphabet[:height], fontsize=20)
ax.set_ylabel('Prediction class by astroNN', fontsize=18)
ax.set_xlabel('True class', fontsize=18)
fig.tight_layout(rect=[0, 0.00, 0.8, 0.96])
fig.show()
return None
示例6: plot_heatmap_griewank
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def plot_heatmap_griewank(results,algorithms, fig_name='heatmap_griewank.png'):
"""Example Plot as seen in the SPOTPY Documentation"""
import matplotlib.pyplot as plt
from matplotlib import ticker
from matplotlib import cm
font = {'family' : 'calibri',
'weight' : 'normal',
'size' : 20}
plt.rc('font', **font)
subplots=len(results)
xticks=[-40,0,40]
yticks=[-40,0,40]
fig=plt.figure(figsize=(16,6))
N = 2000
x = np.linspace(-50.0, 50.0, N)
y = np.linspace(-50.0, 50.0, N)
x, y = np.meshgrid(x, y)
z=1+ (x**2+y**2)/4000 - np.cos(x/np.sqrt(2))*np.cos(y/np.sqrt(3))
cmap = plt.get_cmap('autumn')
rows=2.0
for i in range(subplots):
amount_row = int(np.ceil(subplots/rows))
ax = plt.subplot(rows, amount_row, i+1)
CS = ax.contourf(x, y, z,locator=ticker.LogLocator(),cmap=cm.rainbow)
ax.plot(results[i]['par0'],results[i]['par1'],'ko',alpha=0.2,markersize=1.9)
ax.xaxis.set_ticks([])
if i==0:
ax.set_ylabel('y')
if i==subplots/rows:
ax.set_ylabel('y')
if i>=subplots/rows:
ax.set_xlabel('x')
ax.xaxis.set_ticks(xticks)
if i!=0 and i!=subplots/rows:
ax.yaxis.set_ticks([])
ax.set_title(algorithms[i])
fig.savefig(fig_name, bbox_inches='tight')
示例7: hierarchical_clustering
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def hierarchical_clustering(mat, method='average', cluster_distance=True, labels=None, thres=0.65):
"""
Performs hierarchical clustering based on distance matrix 'mat' using the method specified by 'method'.
Optional argument 'labels' may specify a list of labels. If cluster_distance is True, the clustering is
performed on the distance matrix using euclidean distance. Otherwise, mat specifies the distance matrix for
clustering. Adapted from
http://stackoverflow.com/questions/7664826/how-to-get-flat-clustering-corresponding-to-color-clusters-in-the-dendrogram-cre
Not subjected to copyright.
"""
D = numpy.array(mat)
if not cluster_distance:
Dtriangle = scipy.spatial.distance.squareform(D)
else:
Dtriangle = scipy.spatial.distance.pdist(D, metric='euclidean')
fig = pylab.figure(figsize=(8, 8))
ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6])
Y = sch.linkage(Dtriangle, method=method)
Z1 = sch.dendrogram(Y, orientation='right', color_threshold=thres*max(Y[:, 2]))
ax1.set_xticks([])
ax1.set_yticks([])
ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2])
Y = sch.linkage(Dtriangle, method=method)
Z2 = sch.dendrogram(Y, color_threshold=thres*max(Y[:, 2]))
ax2.set_xticks([])
ax2.set_yticks([])
axmatrix = fig.add_axes([0.3, 0.1, 0.6, 0.6])
idx1 = Z1['leaves']
idx2 = Z2['leaves']
D = D[idx1, :]
D = D[:, idx2]
im = axmatrix.matshow(D, aspect='auto', origin='lower', cmap=pylab.get_cmap('jet_r'))
if labels is None:
axmatrix.set_xticks([])
axmatrix.set_yticks([])
else:
axmatrix.set_xticks(range(len(labels)))
lab = [labels[idx1[m]] for m in range(len(labels))]
axmatrix.set_xticklabels(lab)
axmatrix.set_yticks(range(len(labels)))
axmatrix.set_yticklabels(lab)
for tick in pylab.gca().xaxis.iter_ticks():
tick[0].label2On = False
tick[0].label1On = True
tick[0].label1.set_rotation('vertical')
for tick in pylab.gca().yaxis.iter_ticks():
tick[0].label2On = True
tick[0].label1On = False
axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.6])
pylab.colorbar(im, cax=axcolor)
pylab.show()
return Z1
示例8: plot_rels
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8):
ns, n = data.shape
if labels is None:
labels = list(map(str, range(n)))
ncol = 5
# ncol = 4
nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))
#nrow=1
#pylab.rcParams.update({'figure.autolayout': True})
fig, axs = pylab.subplots(nrow, ncol)
fig.set_size_inches(5 * ncol, 5 * nrow)
#fig.set_canvas(pylab.gcf().canvas)
pairs = list(combinations(range(n), 2)) #[:4]
pairs = sorted(pairs, key=lambda q: q[0]**2+q[1]**2) # Puts stronger relationships first
if colors is not None:
colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)).clip(1e-7)
for ax, pair in zip(axs.flat, pairs):
if latent is None:
ax.scatter(data[:, pair[0]], data[:, pair[1]], marker='.', edgecolors='none', alpha=alpha)
else:
# cs = 'rgbcmykrgbcmyk'
markers = 'x+.o,<>^^<>,+x.'
for j, ind in enumerate(np.unique(latent)):
inds = (latent == ind)
ax.scatter(data[inds, pair[0]], data[inds, pair[1]], c=colors[inds], cmap=pylab.get_cmap("jet"),
marker=markers[j], alpha=0.5, edgecolors='none', vmin=0, vmax=1)
ax.set_xlabel(shorten(labels[pair[0]]))
ax.set_ylabel(shorten(labels[pair[1]]))
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.scatter(data[:, 0], data[:, 1], marker='.')
pylab.rcParams['font.size'] = 12 #6
pylab.draw()
#fig.set_tight_layout(True)
fig.tight_layout()
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.set_visible(False)
filename = outfile + '.png'
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
fig.savefig(outfile + '.png') #df')
pylab.close('all')
return True
示例9: plot_rels
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''):
ns, n = data.shape
if labels is None:
labels = list(map(str, list(range(n))))
ncol = 5
nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))
fig, axs = pylab.subplots(nrow, ncol)
fig.set_size_inches(5 * ncol, 5 * nrow)
pairs = list(combinations(list(range(n)), 2))
if colors is not None:
colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors))
for ax, pair in zip(axs.flat, pairs):
diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]])
diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]])
ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x])
ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y])
ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"),
marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1)
ax.set_xlabel(shorten(labels[pair[0]]))
ax.set_ylabel(shorten(labels[pair[1]]))
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.scatter(data[:, 0], data[:, 1], marker='.')
fig.suptitle(title, fontsize=16)
pylab.rcParams['font.size'] = 12 #6
# pylab.draw()
# fig.set_tight_layout(True)
pylab.tight_layout()
pylab.subplots_adjust(top=0.95)
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.set_visible(False)
filename = outfile + '.png'
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
fig.savefig(outfile + '.png')
pylab.close('all')
return True
# Hierarchical graph visualization utilities
示例10: vis_vert2kp
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import get_cmap [as 别名]
def vis_vert2kp(verts, vert2kp, face, mvs=None):
"""
verts: N x 3
vert2kp: K x N
For each keypoint, visualize its weights on each vertex.
Base color is white, pick a color for each kp.
Using the weights, interpolate between base and color.
"""
from psbody.mesh.mesh import Mesh
from psbody.mesh.meshviewer import MeshViewer, MeshViewers
from psbody.mesh.sphere import Sphere
num_kp = vert2kp.shape[0]
if mvs is None:
mvs = MeshViewers((4, 4))
# mv = MeshViewer()
# Generate colors
import pylab
cm = pylab.get_cmap('gist_rainbow')
cms = 255 * np.array([cm(1. * i / num_kp)[:3] for i in range(num_kp)])
base = np.zeros((1, 3)) * 255
# base = np.ones((1, 3)) * 255
verts = convert2np(verts)
vert2kp = convert2np(vert2kp)
num_row = len(mvs)
num_col = len(mvs[0])
colors = []
for k in range(num_kp):
# Nx1 for this kp.
weights = vert2kp[k].reshape(-1, 1)
# So we can see it,,
weights = weights / weights.max()
cm = cms[k, None]
# Simple linear interpolation,,
# cs = np.uint8((1-weights) * base + weights * cm)
# In [0, 1]
cs = ((1 - weights) * base + weights * cm) / 255.
colors.append(cs)
# sph = [Sphere(center=jc, radius=.03).to_mesh(c/255.) for jc, c in zip(vert,cs)]
# mvs[int(k/4)][k%4].set_dynamic_meshes(sph)
mvs[int(k % num_row)][int(k / num_row)].set_dynamic_meshes(
[Mesh(verts, face, vc=cs)])