本文整理汇总了Python中pylab.figure方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.figure方法的具体用法?Python pylab.figure怎么用?Python pylab.figure使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pylab
的用法示例。
在下文中一共展示了pylab.figure方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_confusion_matrix
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
"""plot_confusion_matrix."""
cm = confusion_matrix(y_true, y_pred)
fmt = "%d"
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fmt = "%.2f"
xticklabels = list(sorted(set(y_pred)))
yticklabels = list(sorted(set(y_true)))
if size is not None:
plt.figure(figsize=(size, size))
heatmap(cm, xlabel='Predicted label', ylabel='True label',
xticklabels=xticklabels, yticklabels=yticklabels,
cmap=plt.cm.Blues, fmt=fmt)
if normalize:
plt.title("Confusion matrix (norm.)")
else:
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
示例2: plot_roc_curve
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例3: plot_learning_curve
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def plot_learning_curve(train_sizes, train_scores, test_scores):
"""plot_learning_curve."""
plt.figure(figsize=(15, 5))
plt.title('Learning Curve')
plt.xlabel("Training examples")
plt.ylabel("AUC ROC")
tr_ys = compute_stats(train_scores)
te_ys = compute_stats(test_scores)
plot_stats(train_sizes, tr_ys,
label='Training score',
color='navy')
plot_stats(train_sizes, te_ys,
label='Cross-validation score',
color='orange')
plt.grid(linestyle=":")
plt.legend(loc="best")
plt.show()
示例4: __init__
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def __init__(self, add_inputs, title='', **kwargs):
super(OffshorePlot, self).__init__(**kwargs)
self.fig = plt.figure(num=None, facecolor='w', edgecolor='k') #figsize=(13, 8), dpi=1000
self.shape_plot = self.fig.add_subplot(121)
self.objf_plot = self.fig.add_subplot(122)
self.targname = add_inputs
self.title = title
# Adding automatically the inputs
for i in add_inputs:
self.add(i, Float(0.0, iotype='in'))
#sns.set(style="darkgrid")
#self.pal = sns.dark_palette("skyblue", as_cmap=True)
plt.rc('lines', linewidth=1)
plt.ion()
self.force_execute = True
if not pa('fig').exists():
pa('fig').mkdir()
示例5: plot_wt_layout
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def plot_wt_layout(wt_layout, borders=None, depth=None):
fig = plt.figure(figsize=(6,6), dpi=2000)
fs = 14
ax = plt.subplot(111)
if depth is not None:
N = 100
X, Y = plt.meshgrid(plt.linspace(depth[:,0].min(), depth[:,0].max(), N),
plt.linspace(depth[:,1].min(), depth[:,1].max(), N))
Z = plt.griddata(depth[:,0],depth[:,1],depth[:,2],X,Y, interp='linear')
plt.contourf(X,Y,Z, label='depth [m]')
plt.colorbar().set_label('water depth [m]')
#ax.plot(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], 'or', label='baseline position')
ax.scatter(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], wt_layout._wt_list('rotor_diameter'), label='baseline position')
if borders is not None:
ax.plot(borders[:,0], borders[:,1], 'r--', label='border')
ax.set_xlabel('x [m]');
ax.set_ylabel('y [m]')
ax.axis('equal');
ax.legend(loc='lower left')
示例6: plot_wind_rose
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def plot_wind_rose(wind_rose):
fig = plt.figure(figsize=(12,5), dpi=1000)
# Plotting the wind statistics
ax1 = plt.subplot(121, polar=True)
w = 2.*np.pi/len(wind_rose.frequency)
b = ax1.bar(np.pi/2.0-np.array(wind_rose.wind_directions)/180.*np.pi - w/2.0,
np.array(wind_rose.frequency)*100, width=w)
# Trick to set the right axes (by default it's not oriented as we are used to in the WE community)
mirror = lambda d: 90.0 - d if d < 90.0 else 360.0 + (90.0 - d)
ax1.set_xticklabels([u'%d\xb0'%(mirror(d)) for d in linspace(0.0, 360.0,9)[:-1]]);
ax1.set_title('Wind direction frequency');
# Plotting the Weibull A parameter
ax2 = plt.subplot(122, polar=True)
b = ax2.bar(np.pi/2.0-np.array(wind_rose.wind_directions)/180.*np.pi - w/2.0,
np.array(wind_rose.A), width=w)
ax2.set_xticklabels([u'%d\xb0'%(mirror(d)) for d in linspace(0.0, 360.0,9)[:-1]]);
ax2.set_title('Weibull A parameter per wind direction sectors');
示例7: test_hist_legacy
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def test_hist_legacy(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month)
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax)
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
_check_plot_works(self.ts.hist, figure=fig)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
with pytest.raises(ValueError):
self.ts.hist(by=self.ts.index, figure=fig)
示例8: test_grouped_hist_multiple_axes
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def test_grouped_hist_multiple_axes(self):
# GH 6970, GH 7069
df = self.hist_df
fig, axes = self.plt.subplots(2, 3)
returned = df.hist(column=['height', 'weight', 'category'], ax=axes[0])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
returned = df.hist(by='classroom', ax=axes[1])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
with pytest.raises(ValueError):
fig, axes = self.plt.subplots(2, 3)
# pass different number of axes from required
axes = df.hist(column='height', ax=axes)
示例9: init_plot
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def init_plot():
ax = pl.figure().add_subplot(111, projection='3d')
# hide axis, thank to
# https://stackoverflow.com/questions/29041326/3d-plot-with-matplotlib-hide-axes-but-keep-axis-labels/
ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
# Get rid of the spines
ax.w_xaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
ax.w_yaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
ax.w_zaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
# Get rid of the ticks
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
return (ax, [np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf])
示例10: generate
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def generate(self, filename, show=True):
'''Generate a sample sequence, plot the resulting piano-roll and save
it as a MIDI file.
filename : string
A MIDI file will be created at this location.
show : boolean
If True, a piano-roll of the generated sequence will be shown.'''
piano_roll = self.generate_function()
midiwrite(filename, piano_roll, self.r, self.dt)
if show:
extent = (0, self.dt * len(piano_roll)) + self.r
pylab.figure()
pylab.imshow(piano_roll.T, origin='lower', aspect='auto',
interpolation='nearest', cmap=pylab.cm.gray_r,
extent=extent)
pylab.xlabel('time (s)')
pylab.ylabel('MIDI note number')
pylab.title('generated piano-roll')
示例11: on_press
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def on_press(self, event):
if all((self.x0, self.y0)):
self.x1 = event.xdata
self.y1 = event.ydata
# If both corners are defined
if all((self.x0, self.y0, self.x1, self.y1)):
self.rect.set_width(self.x1 - self.x0)
self.rect.set_height(self.y1 - self.y0)
self.rect.set_xy((self.x0, self.y0))
self.ax.add_patch(self.rect)
self.ax.figure.canvas.draw()
self.on_draw()
self.on_reset()
else:
self.x0 = event.xdata
self.y0 = event.ydata
示例12: draw_adjacency_graph
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def draw_adjacency_graph(adjacency_matrix,
node_color=None,
size=10,
layout='graphviz',
prog='neato',
node_size=80,
colormap='autumn'):
"""draw_adjacency_graph."""
graph = nx.from_scipy_sparse_matrix(adjacency_matrix)
plt.figure(figsize=(size, size))
plt.grid(False)
plt.axis('off')
if layout == 'graphviz':
pos = nx.graphviz_layout(graph, prog=prog)
else:
pos = nx.spring_layout(graph)
if len(node_color) == 0:
node_color = 'gray'
nx.draw_networkx_nodes(graph, pos,
node_color=node_color,
alpha=0.6,
node_size=node_size,
cmap=plt.get_cmap(colormap))
nx.draw_networkx_edges(graph, pos, alpha=0.5)
plt.show()
# draw a whole set of graphs::
示例13: draw_graph_row
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def draw_graph_row(graphs,
index=0,
contract=True,
n_graphs_per_line=5,
size=4,
xlim=None,
ylim=None,
**args):
"""draw_graph_row."""
dim = len(graphs)
size_y = size
size_x = size * n_graphs_per_line * args.get('size_x_to_y_ratio', 1)
plt.figure(figsize=(size_x, size_y))
if xlim is not None:
plt.xlim(xlim)
plt.ylim(ylim)
else:
plt.xlim(xmax=3)
for i in range(dim):
plt.subplot(1, n_graphs_per_line, i + 1)
graph = graphs[i]
draw_graph(graph,
size=None,
pos=graph.graph.get('pos_dict', None),
**args)
if args.get('file_name', None) is None:
plt.show()
else:
row_file_name = '%d_' % (index) + args['file_name']
plt.savefig(row_file_name,
bbox_inches='tight',
transparent=True,
pad_inches=0)
plt.close()
示例14: dendrogram
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def dendrogram(data,
vectorizer,
method="ward",
color_threshold=1,
size=10,
filename=None):
"""dendrogram.
"median","centroid","weighted","single","ward","complete","average"
"""
data = list(data)
# get labels
labels = []
for graph in data:
label = graph.graph.get('id', None)
if label:
labels.append(label)
# transform input into sparse vectors
data_matrix = vectorizer.transform(data)
# labels
if not labels:
labels = [str(i) for i in range(data_matrix.shape[0])]
# embed high dimensional sparse vectors in 2D
from sklearn import metrics
from scipy.cluster.hierarchy import linkage, dendrogram
distance_matrix = metrics.pairwise.pairwise_distances(data_matrix)
linkage_matrix = linkage(distance_matrix, method=method)
plt.figure(figsize=(size, size))
dendrogram(linkage_matrix,
color_threshold=color_threshold,
labels=labels,
orientation='right')
if filename is not None:
plt.savefig(filename)
else:
plt.show()
示例15: plot_confusion_matrices
# 需要导入模块: import pylab [as 别名]
# 或者: from pylab import figure [as 别名]
def plot_confusion_matrices(y_true, y_pred, size=12):
"""plot_confusion_matrices."""
plt.figure(figsize=(size, size))
plt.subplot(121)
plot_confusion_matrix(y_true, y_pred, normalize=False)
plt.subplot(122)
plot_confusion_matrix(y_true, y_pred, normalize=True)
plt.tight_layout(w_pad=5)
plt.show()