本文整理汇总了Python中pyecharts.charts.Line方法的典型用法代码示例。如果您正苦于以下问题:Python charts.Line方法的具体用法?Python charts.Line怎么用?Python charts.Line使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyecharts.charts
的用法示例。
在下文中一共展示了charts.Line方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: v_totvalue
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def v_totvalue(self, end=yesterdayobj(), rendered=True, vopts=None):
"""
visualization on the total values daily change of the aim
"""
partp = self.price[self.price["date"] >= self.cftable.iloc[0].date]
# 多基金账单时起点可能非该基金持有起点
partp = partp[partp["date"] <= end]
date = [d.date() for d in partp.date]
valuedata = [
self.briefdailyreport(d).get("currentvalue", 0) for d in partp.date
]
line = Line()
if vopts is None:
vopts = line_opts
line.add_xaxis(date)
line.add_yaxis(series_name="持仓总值", y_axis=valuedata, is_symbol_show=False)
line.set_global_opts(**vopts)
if rendered:
return line.render_notebook()
else:
return line
示例2: _draw_line
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def _draw_line(result: ClassifierResult) -> Line:
# draw line chart
x_axis = [str(i) for i in result.get_timestamp_list()]
y_axis = result.get_stage_list()
line = Line(init_opts=opts.InitOpts(bg_color=constants.BACKGROUND_COLOR))
line.add_xaxis(x_axis)
line.add_yaxis("stage", y_axis, is_step=False, is_symbol_show=True)
line.set_global_opts(
title_opts=opts.TitleOpts(
title="Trend", subtitle="describe how these stages switching"
),
toolbox_opts=opts.ToolboxOpts(is_show=True),
tooltip_opts=opts.TooltipOpts(
is_show=True, trigger="axis", axis_pointer_type="cross"
),
brush_opts=opts.BrushOpts(x_axis_index="all", tool_box=["lineX"]),
)
return line
示例3: _draw_sim
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def _draw_sim(data: VideoCutResult) -> Line:
x_axis = [str(i.start) for i in data.range_list]
ssim_axis = [i.ssim for i in data.range_list]
mse_axis = [i.mse for i in data.range_list]
psnr_axis = [i.psnr for i in data.range_list]
line = Line(init_opts=opts.InitOpts(bg_color=constants.BACKGROUND_COLOR))
line.add_xaxis(x_axis)
line.add_yaxis("ssim", ssim_axis)
line.add_yaxis("mse", mse_axis)
line.add_yaxis("psnr", psnr_axis)
line.set_global_opts(
title_opts=opts.TitleOpts(title="SIM"),
toolbox_opts=opts.ToolboxOpts(is_show=True),
tooltip_opts=opts.TooltipOpts(
is_show=True, trigger="axis", axis_pointer_type="cross"
),
)
line.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
return line
示例4: report
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def report(request):
"""返回慢SQL历史趋势"""
checksum = request.GET.get('checksum')
cnt_data = ChartDao().slow_query_review_history_by_cnt(checksum)
pct_data = ChartDao().slow_query_review_history_by_pct_95_time(checksum)
cnt_x_data = [row[1] for row in cnt_data['rows']]
cnt_y_data = [int(row[0]) for row in cnt_data['rows']]
pct_y_data = [str(row[0]) for row in pct_data['rows']]
line = Line(init_opts=opts.InitOpts(width='800', height='380px'))
line.add_xaxis(cnt_x_data)
line.add_yaxis("慢查次数", cnt_y_data, is_smooth=True,
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="max", name='最大值'),
opts.MarkLineItem(type_="average", name='平均值')]))
line.add_yaxis("慢查时长(95%)", pct_y_data, is_smooth=True, is_symbol_show=False)
line.set_series_opts(areastyle_opts=opts.AreaStyleOpts(opacity=0.5, ))
line.set_global_opts(title_opts=opts.TitleOpts(title='SQL历史趋势'),
legend_opts=opts.LegendOpts(selected_mode='single'),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
), )
result = {"status": 0, "msg": '', "data": line.render_embed()}
return HttpResponse(json.dumps(result), content_type='application/json')
示例5: v_netvalue
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def v_netvalue(self, end=yesterdayobj(), vopts=None, rendered=True):
"""
起点对齐归一的,各参考基金或指数的净值比较可视化
:param end: string or object of date, the end date of the line
:param vkwds: pyechart line.add() options
:param vopts: dict, options for pyecharts instead of builtin settings
:returns: pyecharts.charts.Line.render_notebook()
"""
partprice = self.totprice[self.totprice["date"] <= end]
line = Line()
if vopts is None:
vopts = line_opts
line.set_global_opts(**vopts)
line.add_xaxis([d.date() for d in list(partprice.date)])
for fund in self.fundobjs:
line.add_yaxis(
series_name=fund.name,
y_axis=list(partprice[fund.code]),
is_symbol_show=False,
)
if rendered:
return line.render_notebook()
else:
return line
示例6: v_netvalue
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def v_netvalue(self, end=yesterdayobj(), benchmark=True, rendered=True, vopts=None):
"""
visulaization on netvalue curve
:param end: dateobject for indicating the end date in the figure, default to yesterday
:param benchmark: bool, whether include benchmark's netvalue curve, default true
:param vopts: dict, options for pyecharts instead of builtin settings
"""
if getattr(self, "bmprice", None) is None:
benchmark = False
if benchmark:
a, b = self.comparison(end)
else:
a = self.price
if vopts is None:
vopts = line_opts
line = Line()
line.add_xaxis([d.date() for d in list(a.date)])
line.add_yaxis(
y_axis=list(a.netvalue), series_name=self.name, is_symbol_show=False
)
line.set_global_opts(**vopts)
if benchmark:
line.add_yaxis(
series_name=self.benchmark.name,
y_axis=list(b.netvalue),
is_symbol_show=False,
)
if rendered:
return line.render_notebook()
else:
return line
示例7: v_techindex
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def v_techindex(self, end=yesterdayobj(), col=None, rendered=True, vopts=None):
"""
visualization on netvalue curve and specified indicators
:param end: date string or obj, the end date of the figure
:param col: list, list of strings for price col name, eg.['MA5','BBI']
remember generate these indicators before the visualization,
these cols don't automatically generate for visualization
:param vopts: dict, options for pyecharts instead of builtin settings
"""
partprice = self.price[self.price["date"] <= end]
xdata = [d.date() for d in list(partprice.date)]
netvaldata = list(partprice.netvalue)
if vopts is None:
vopts = line_opts
line = Line()
line.add_xaxis(xdata)
line.add_yaxis(series_name="netvalue", y_axis=netvaldata, is_symbol_show=False)
line.set_global_opts(**vopts)
if col is not None:
for ind in col:
inddata = list(partprice[ind])
line.add_yaxis(series_name=ind, y_axis=inddata, is_symbol_show=False)
if rendered:
return line.render_notebook()
else:
return line
示例8: api_profile_line_chart
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def api_profile_line_chart() -> Line:
"""
接口平均耗时
:return:
"""
xaxis = get_xaxis_days(days=10)
apis = list(filter(lambda x: x, R.smembers(settings.REDIS_API_KEY)))
line = (
Line()
.add_xaxis(xaxis)
.set_global_opts(title_opts=options.TitleOpts(title="API 耗时走势"),
yaxis_opts=options.AxisOpts(
is_scale=True,
splitline_opts=options.SplitLineOpts(is_show=True)
),
tooltip_opts=options.TooltipOpts(trigger='axis'),
)
)
for api in apis:
if api in get_profile_apis():
api_redis_keys = [settings.REDIS_API_AVG_KEY % (api, day) for day in xaxis]
api_profile = R.mget(*api_redis_keys)
line.add_yaxis(api, api_profile, is_connect_nones=True, is_smooth=True,
label_opts=options.LabelOpts(is_show=False))
return line.dump_options()
示例9: uv_line_chart
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def uv_line_chart() -> Line:
"""
UV折线图,包括总 UV、新用户 UV、注册 UV
"""
xaxis = get_xaxis_days()
uv_all_redis_keys = [settings.REDIS_UV_ALL_KEY % day for day in xaxis]
uv_new_redis_keys = [settings.REDIS_UV_NEW_KEY % day for day in xaxis]
uv_reg_redis_keys = [settings.REDIS_REG_KEY % day for day in xaxis]
uv_all = R.mget(*uv_all_redis_keys)
uv_new = R.mget(*uv_new_redis_keys)
uv_reg = R.mget(*uv_reg_redis_keys)
line = (
Line()
.add_xaxis(xaxis)
.add_yaxis("总用户数(访问设备)", uv_all, is_connect_nones=True, is_smooth=True)
.add_yaxis("新用户数(一周未访问)", uv_new, is_connect_nones=True, is_smooth=True)
.add_yaxis("注册用户数", uv_reg, is_connect_nones=True, is_smooth=True)
.set_global_opts(title_opts=options.TitleOpts(title="用户数走势"),
yaxis_opts=options.AxisOpts(
is_scale=True,
splitline_opts=options.SplitLineOpts(is_show=True)
),
tooltip_opts=options.TooltipOpts(trigger='axis'),
)
.dump_options()
)
return line
示例10: refer_pv_line_chart
# 需要导入模块: from pyecharts import charts [as 别名]
# 或者: from pyecharts.charts import Line [as 别名]
def refer_pv_line_chart() -> Line:
"""
UV折线图,外域的每天流量趋势
"""
xaxis = get_xaxis_days()
uv_zhihu_redis_keys = [settings.REDIS_REFER_PV_DAY_KEY % ('link.zhihu.com', day) for day in xaxis]
uv_ryf_redis_keys = [settings.REDIS_REFER_PV_DAY_KEY % ('www.ruanyifeng.com', day) for day in xaxis]
uv_github_redis_keys = [settings.REDIS_REFER_PV_DAY_KEY % ('github.com', day) for day in xaxis]
uv_baidu_redis_keys = [settings.REDIS_REFER_PV_DAY_KEY % ('www.baidu.com', day) for day in xaxis]
uv_google_redis_keys = [settings.REDIS_REFER_PV_DAY_KEY % ('www.google.com', day) for day in xaxis]
uv_wanqu_redis_keys = [settings.REDIS_REFER_PV_DAY_KEY % ('wanqu.co', day) for day in xaxis]
uv_zhihu = R.mget(*uv_zhihu_redis_keys)
uv_ryf = R.mget(*uv_ryf_redis_keys)
uv_github = R.mget(*uv_github_redis_keys)
uv_baidu = R.mget(*uv_baidu_redis_keys)
uv_google = R.mget(*uv_google_redis_keys)
uv_wanqu = R.mget(*uv_wanqu_redis_keys)
line = (
Line()
.add_xaxis(xaxis)
.add_yaxis("zhihu", uv_zhihu, is_connect_nones=True, is_smooth=True)
.add_yaxis("ruanyifeng", uv_ryf, is_connect_nones=True, is_smooth=True)
.add_yaxis("github", uv_github, is_connect_nones=True, is_smooth=True)
.add_yaxis("baidu", uv_baidu, is_connect_nones=True, is_smooth=True)
.add_yaxis("google", uv_google, is_connect_nones=True, is_smooth=True)
.add_yaxis("wanqu", uv_wanqu, is_connect_nones=True, is_smooth=True)
.set_global_opts(title_opts=options.TitleOpts(title="Referer各域名PV走势"),
yaxis_opts=options.AxisOpts(
is_scale=True,
splitline_opts=options.SplitLineOpts(is_show=True)
),
tooltip_opts=options.TooltipOpts(trigger='axis'),
)
.dump_options()
)
return line