当前位置: 首页>>代码示例>>Python>>正文


Python pyecharts.Bar方法代码示例

本文整理汇总了Python中pyecharts.Bar方法的典型用法代码示例。如果您正苦于以下问题:Python pyecharts.Bar方法的具体用法?Python pyecharts.Bar怎么用?Python pyecharts.Bar使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyecharts的用法示例。


在下文中一共展示了pyecharts.Bar方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: show_with_chart

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def show_with_chart(top_10):
    """
        把最低的十个城市和温度生成饼状图
        :param top_10:
        :return:
        """
    # 1.获取城市列表
    citys = list(map(lambda item: item['city'], top_10))
    
    # 2.最低温度列表
    temp_lows = list(map(lambda item: item['temp_low'], top_10))
    
    # 3.生成饼状图并写入到html文件中
    bar = Bar("最低气温排行榜")
    
    bar.add("最低温度", citys, temp_lows)
    
    # 渲染
    bar.render('temperature.html') 
开发者ID:xingag,项目名称:spider_python,代码行数:21,代码来源:spider_china_weather.py

示例2: pic

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def pic(data, file):
    # all_poet = [i[0] for i in data[:30]]
    # all_num = [i[1] for i in data[:30]]
    # br = pyecharts.Bar(title=file.rstrip('.txt')+'最高频的多字意象:', title_top=0,  width=1200, height=700,)

    # br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    # br.use_theme('dark')
    # br.render(path=file.rstrip('.txt')+'最高频的多字意象:_条形图'+'.html')

    all_poet = [i[0] for i in data[:500]]
    all_num = [i[1] for i in data[:500]]
    wordcloud = WordCloud(title='\n'+file.rstrip('.txt')+'多字意象分析',title_pos='center', width=1300, height=620, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=45)
    wordcloud.render(path=file.rstrip('.txt')+'最高频的多字意象_词云'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:21,代码来源:多字意象分析.py

示例3: pic

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def pic(data, file):
    # all_poet = [i[0] for i in data[:30]]
    # all_num = [i[1] for i in data[:30]]
    # br = pyecharts.Bar(title=file.rstrip('.txt')+'最爱用的单字意象:', title_top=0,  width=1200, height=700,)

    # br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    # br.use_theme('dark')
    # br.render(path=file.rstrip('.txt')+'最爱用的单字意象:_条形图'+'.html')

    all_poet = [i[0] for i in data[:500]]
    all_num = [i[1] for i in data[:500]]
    wordcloud = WordCloud(width=1300, height=620, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=45)
    wordcloud.render(path=file.rstrip('.txt')+'最爱用的单字意象_词云'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:21,代码来源:单字意象分析.py

示例4: bar_chart

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def bar_chart():
    d = db.session.query(func.count(extract('Day', Purchase.purchase_addtime)),
                         extract('Day', Purchase.purchase_addtime)).group_by(
        extract('Day', Purchase.purchase_addtime)
    ).all()

    attr = ["{}号".format(j) for _,j in d]
    v1 = [i for i,_ in d]
    bar = Bar("日采购量")
    bar.add(
        "",
        attr,
        v1,
        is_datazoom_show=True,
        datazoom_type="both",
        datazoom_range=[10, 25],
    )
    return bar


# 销售表格
# 销售量 
开发者ID:agamgn,项目名称:flask-Purchase_and_sale,代码行数:24,代码来源:uilt.py

示例5: create_simple_bar

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def create_simple_bar():
    bar = Bar("我的第一个图表", "这里是副标题")
    bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
    bar.renderer = 'svg'
    return bar 
开发者ID:kinegratii,项目名称:django-echarts,代码行数:7,代码来源:demo_data.py

示例6: get_echarts_instance

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def get_echarts_instance(self, *args, **kwargs):
        device_data = models.Device.objects.values('device_type').annotate(count=Count('device_type'))
        device_types, counters = fetch(device_data, 'device_type', 'count')
        pie = Pie("设备分类", page_title='设备分类', width='100%')
        pie.add("设备分类", device_types, counters, is_label_show=True)

        battery_lifes = models.Device.objects.values('name', 'battery_life')
        names, lifes = fetch(battery_lifes, 'name', 'battery_life')
        bar = Bar('设备电量', page_title='设备电量', width='100%')
        bar.add("设备电量", names, lifes)
        page = Page.from_charts(pie, bar)
        return page 
开发者ID:kinegratii,项目名称:django-echarts,代码行数:14,代码来源:backend_views.py

示例7: get_echarts_instance

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def get_echarts_instance(self, *args, **kwargs):
        bar = Bar("我的第一个图表", "这里是副标题")
        bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
        return bar 
开发者ID:kinegratii,项目名称:django-echarts,代码行数:6,代码来源:bar_backend_view.py

示例8: plot_chart

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def plot_chart(counter, chart_type='Bar'):
    items = [item[0] for item in counter]
    values = [item[1] for item in counter]

    if chart_type == 'Bar':
        chart = Bar('微博动态词频统计')
        chart.add('词频', items, values, is_more_utils=True)
    else:
        chart = Pie('微博动态词频统计')
        chart.add('词频', items, values, is_label_show=True, is_more_utils=True)

    chart.render('weibo_wordfrq.html')

#画出微博发布时间的统计图 
开发者ID:starFalll,项目名称:Spider,代码行数:16,代码来源:Data_analysis.py

示例9: plot_create_time

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def plot_create_time(time_lists):
    recent_time = re.compile(r'\d{2}月\d{2}日',re.S)
    long_time = re.compile(r'(\d{4}-\d{2}-\d{2})',re.S)
    tmp_lists = []#保存**月**日格式的数据
    tmp_nums = []#统计**月**日发帖数量
    long_lists = []#保存20**-**-**格式的数据
    long_nums = []#统计20**-**-**发帖数量
    for t in time_lists:
        res = re.findall(recent_time, t)
        if(res):#res[0]为**月**日格式的数据

            if(not tmp_lists or res[0]!= tmp_lists[-1]):#列表为空或者不与前一个日期重复
                tmp_lists.append(res[0])
                tmp_nums.append(1)
            else:#与前一个日期重复,计数加一
                tmp_nums[-1]+=1
        else:#res[0]20**-**-**格式的数据
            res = re.findall(long_time,t)

            if(not long_lists or res[0]!=long_lists[-1]):
                long_lists.append(res[0])
                long_nums.append(1)
            else:
                long_nums[-1]+=1
    #将时间按照从远到进的顺序排列
    tmp_lists.reverse()
    tmp_nums.reverse()
    long_lists.reverse()
    long_nums.reverse()
    time_list = long_lists + tmp_lists
    time_nums = long_nums + tmp_nums
    chart = Bar('用户微博动态发布时间')
    chart.add('动态数', time_list, time_nums, is_more_utils=True,datazoom_range=[10,40],is_datazoom_show=True)
    chart.render("weibo_dynamic.html")

#可以指定需要分析的用户的uid(必须先存在conf.yaml里面,并且运行了一次sina_spider程序) 
开发者ID:starFalll,项目名称:Spider,代码行数:38,代码来源:Data_analysis.py

示例10: pic

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def pic(data, file):
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'最受欢迎的词牌', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme('dark')
    br.render(path=file.rstrip('.txt')+'最受欢迎的词牌_条形图'+'.html')

    all_poet = [i[0] for i in data[:1000]]
    all_num = [i[1] for i in data[:1000]]
    wordcloud = WordCloud(width=1300, height=620)
    wordcloud.add("", all_poet, all_num, word_size_range=[5, 50])
    wordcloud.render(path=file.rstrip('.txt')+'最受欢迎的词牌_词云'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:16,代码来源:宋词词牌名分析.py

示例11: pic

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def pic(data, file):
    pyecharts.configure(
    jshost=None,
    echarts_template_dir=None,
    force_js_embed=None,
    output_image=None,
    global_theme='vintage'
    )
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'诗人最爱用的动词', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme("vintage")
    br.render(path=file.rstrip('.txt')+'诗人最爱用的动词_条形图'+'.html')

    all_poet = [i[0] for i in data[:600]]
    all_num = [i[1] for i in data[:600]]
    wordcloud = WordCloud(title='\n'+file.rstrip('.txt')+'诗人最爱用的动词',title_pos='center', width=1500, height=800, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=80)
    wordcloud.render(path=file.rstrip('.txt')+'诗人最爱用的动词_词云'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:28,代码来源:高频动词分析.py

示例12: pic

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def pic(data, file):
    
    pyecharts.configure(
    jshost=None,
    echarts_template_dir=None,
    force_js_embed=None,
    output_image=None,
    global_theme='infographic'
    )
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'最常见的地名', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme('infographic')
    br.render(path=file.rstrip('.txt')+'最常见的地名_条形图'+'.html')

    all_poet = [i[0] for i in data[:700]]
    all_num = [i[1] for i in data[:700]]
    wordcloud = WordCloud(title=file.rstrip('.txt')+'最常见的地名'+'\n\n', title_pos='center', width=1500, height=800, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=70)
    wordcloud.render(path=file.rstrip('.txt')+'最常见的地名_词云'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:29,代码来源:古诗词常见地名.py

示例13: pic

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def pic(data, file):
    pyecharts.configure(
    jshost=None,
    echarts_template_dir=None,
    force_js_embed=None,
    output_image=None,
    global_theme='shine'
    )
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'诗人最爱用的形容词', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme('shine')
    br.render(path=file.rstrip('.txt')+'诗人最爱用的形容词_条形图'+'.html')

    all_poet = [i[0] for i in data[:600]]
    all_num = [i[1] for i in data[:600]]
    wordcloud = WordCloud(title='\n'+file.rstrip('.txt')+'诗人最爱用的形容词',title_pos='center', width=1500, height=800, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=70)
    wordcloud.render(path=file.rstrip('.txt')+'诗人最爱用的形容词_词云'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:28,代码来源:高频形容词分析.py

示例14: show

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def show(data, file):
    es = pyecharts.Bar(title=file.rstrip('.txt')+'字频', title_top=100,  width=1300, height=700,)
    flag = 1
    for title, num in data:
        if num < 10000:
            pass
        else:
            es.add(title, [flag], [num],xaxis_interval=0, yaxis_interval=0)
            flag += 1
    es.render(path=file.rstrip('.txt')+'_字频'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:12,代码来源:歌词_5字频统计+图表展示.py

示例15: show

# 需要导入模块: import pyecharts [as 别名]
# 或者: from pyecharts import Bar [as 别名]
def show(data, file):
    '''展示图表'''
    all_ci = [i[0] for i in data]
    all_num = [i[1] for i in data]

    rank_bar = pyecharts.Bar('\n{}词频榜'.format(file.rstrip('.txt')), width=1400, height=750, title_pos='center', title_top=3)  # 初始化图表
    # all_names是所有电影名,作为X轴, all_lovers是关注者的数量,作为Y轴。二者数据一一对应。  is_label_show=True,
    # is_convert=True设置x、y轴对调,。is_label_show=True 显示y轴值。 label_pos='right' Y轴值显示在右边
    rank_bar.add('', all_ci, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)

    rank_bar.render(path=file.rstrip('.txt')+'_词频'+'.html') 
开发者ID:ZubinGou,项目名称:AI_Poet_Totoro,代码行数:13,代码来源:歌词_6词频分析+图表展示.py


注:本文中的pyecharts.Bar方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。