当前位置: 首页>>代码示例>>Python>>正文


Python bleu.Bleu方法代码示例

本文整理汇总了Python中pycocoevalcap.bleu.bleu.Bleu方法的典型用法代码示例。如果您正苦于以下问题:Python bleu.Bleu方法的具体用法?Python bleu.Bleu怎么用?Python bleu.Bleu使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pycocoevalcap.bleu.bleu的用法示例。


在下文中一共展示了bleu.Bleu方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: score

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def score(ref, sample):
    # ref and sample are both dict
    scorers = [
        (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
        (Rouge(), "ROUGE_L"),
        (Cider(), "CIDEr")
    ]
    final_scores = {}
    for scorer, method in scorers:
        print('computing %s score with COCO-EVAL...' % (scorer.method()))
        score, scores = scorer.compute_score(ref, sample)
        if type(score) == list:
            for m, s in zip(method, score):
                final_scores[m] = s
        else:
            final_scores[method] = score
    return final_scores 
开发者ID:xiadingZ,项目名称:video-caption-openNMT.pytorch,代码行数:19,代码来源:cocoeval.py

示例2: calc_scores

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def calc_scores(ref, hypo):
    """
    ref, dictionary of reference sentences (id, sentence)
    hypo, dictionary of hypothesis sentences (id, sentence)
    score, dictionary of scores
    """
    scorers = [
        (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
        (Meteor(),"METEOR"),
        (Rouge(), "ROUGE_L"),
        (Cider(), "CIDEr")
    ]
    final_scores = {}
    for scorer, method in scorers:
        score, scores = scorer.compute_score(ref, hypo)
        if type(score) == list:
            for m, s in zip(method, score):
                final_scores[m] = s
        else:
            final_scores[method] = score
    return final_scores 
开发者ID:hobincar,项目名称:RecNet,代码行数:23,代码来源:utils.py

示例3: score_all

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def score_all(ref, hypo):
    scorers = [
        (Bleu(4),["Bleu_1","Bleu_2","Bleu_3","Bleu_4"]),
        (Meteor(),"METEOR"),
        (Rouge(),"ROUGE_L"),
        (Cider(),"CIDEr")
    ]
    final_scores = {}
    for scorer,method in scorers:
        score,scores = scorer.compute_score(ref,hypo)
        if type(score)==list:
            for m,s in zip(method,score):
                final_scores[m] = s
        else:
            final_scores[method] = score

    return final_scores 
开发者ID:weili-ict,项目名称:SelfCriticalSequenceTraining-tensorflow,代码行数:19,代码来源:bleu.py

示例4: score

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def score(ref, hypo):
    """
    ref, dictionary of reference sentences (id, sentence)
    hypo, dictionary of hypothesis sentences (id, sentence)
    score, dictionary of scores
    """
    scorers = [
        (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
        (Meteor(),"METEOR"),
        (Rouge(), "ROUGE_L"),
        (Cider(), "CIDEr")
    ]
    final_scores = {}
    for scorer, method in scorers:
        score, scores = scorer.compute_score(ref, hypo)
        if type(score) == list:
            for m, s in zip(method, score):
                final_scores[m] = s
        else:
            final_scores[method] = score
    return final_scores 
开发者ID:WingsBrokenAngel,项目名称:Semantics-AssistedVideoCaptioning,代码行数:23,代码来源:train_model.py

示例5: test

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def test(model, dataloader, args):
    scorer = Bleu(4)
    m_scorer = Meteor()
    r_scorer = Rouge()
    hyp = []
    ref = []
    model.eval()
    gold_file = open('tmp_gold.txt', 'w')
    pred_file = open('tmp_pred.txt', 'w')
    with tqdm(dataloader, desc='Test ',  mininterval=1) as tq:
        for batch in tq:
            with torch.no_grad():
                seq = model(batch, beam_size=args.beam_size)
            r = write_txt(batch, batch['tgt_text'], gold_file, args)
            h = write_txt(batch, seq, pred_file, args)
            hyp.extend(h)
            ref.extend(r)
    hyp = dict(zip(range(len(hyp)), hyp))
    ref = dict(zip(range(len(ref)), ref))
    print(hyp[0], ref[0])
    print('BLEU INP', len(hyp), len(ref))
    print('BLEU', scorer.compute_score(ref, hyp)[0])
    print('METEOR', m_scorer.compute_score(ref, hyp)[0])
    print('ROUGE_L', r_scorer.compute_score(ref, hyp)[0])
    gold_file.close()
    pred_file.close() 
开发者ID:dmlc,项目名称:dgl,代码行数:28,代码来源:train.py

示例6: score

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def score(ref, hypo):
    scorers = [
        (Bleu(4),["Bleu_1","Bleu_2","Bleu_3","Bleu_4"])

    ]
    final_scores = {}
    for scorer,method in scorers:
        score,scores = scorer.compute_score(ref,hypo)
        if type(score)==list:
            for m,s in zip(method,score):
                final_scores[m] = s
        else:
            final_scores[method] = score

    return final_scores 
开发者ID:weili-ict,项目名称:SelfCriticalSequenceTraining-tensorflow,代码行数:17,代码来源:bleu.py

示例7: init_scorer

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def init_scorer(cached_tokens):
    global CiderD_scorer
    CiderD_scorer = CiderD_scorer or CiderD(df=cached_tokens)
    global Bleu_scorer
    Bleu_scorer = Bleu_scorer or Bleu(4) 
开发者ID:ltguo19,项目名称:VSUA-Captioning,代码行数:7,代码来源:rewards_graph.py

示例8: __init__

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def __init__(self):
        self.scorers = [
            (Bleu(4),  ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
            # (Meteor(), "METEOR"),
            (Rouge(), "ROUGE_L")
        ]#,        (Cider(), "CIDEr") 
开发者ID:EagleW,项目名称:Describing_a_Knowledge_Base,代码行数:8,代码来源:eval.py

示例9: __init__

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def __init__(self):
        self.scorers = [
            (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
            (Meteor(), "METEOR"),
            (Rouge(), "ROUGE_L")
        ]#,        (Cider(), "CIDEr") 
开发者ID:EagleW,项目名称:Describing_a_Knowledge_Base,代码行数:8,代码来源:eval_final.py

示例10: get_self_critical_reward

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def get_self_critical_reward(greedy_res, data_gts, gen_result, opt):
    batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img
    seq_per_img = batch_size // len(data_gts)

    res = OrderedDict()
    
    gen_result = gen_result.data.cpu().numpy()
    greedy_res = greedy_res.data.cpu().numpy()
    for i in range(batch_size):
        res[i] = [array_to_str(gen_result[i])]
    for i in range(batch_size):
        res[batch_size + i] = [array_to_str(greedy_res[i])]

    gts = OrderedDict()
    for i in range(len(data_gts)):
        gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))]

    res_ = [{'image_id':i, 'caption': res[i]} for i in range(2 * batch_size)]
    res__ = {i: res[i] for i in range(2 * batch_size)}
    gts = {i: gts[i % batch_size // seq_per_img] for i in range(2 * batch_size)}
    if opt.cider_reward_weight > 0:
        _, cider_scores = CiderD_scorer.compute_score(gts, res_)
        print('Cider scores:', _)
    else:
        cider_scores = 0
    if opt.bleu_reward_weight > 0:
        _, bleu_scores = Bleu_scorer.compute_score(gts, res__)
        bleu_scores = np.array(bleu_scores[3])
        print('Bleu scores:', _[3])
    else:
        bleu_scores = 0
    scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores

    scores = scores[:batch_size] - scores[batch_size:]

    rewards = np.repeat(scores[:, np.newaxis], gen_result.shape[1], 1)

    return rewards 
开发者ID:husthuaan,项目名称:AAT,代码行数:40,代码来源:rewards.py

示例11: get_dcc_scores

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def get_dcc_scores(self):

    imgIds = self.params['image_id']
    # imgIds = self.coco.getImgIds()
    gts = {}
    res = {}
    for imgId in imgIds:
        gts[imgId] = self.coco.imgToAnns[imgId]
        res[imgId] = self.cocoRes.imgToAnns[imgId]

    tokenizer = PTBTokenizer()
    gts = tokenizer.tokenize(gts)
    res = tokenizer.tokenize(res)
    scorers = [
        (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
        (Meteor(), "METEOR"),
        (Rouge(), "ROUGE_L"),
        (Cider(df='noc_test_freq'), "CIDEr"),
        (Spice(), "SPICE")
    ]
    score_dict = {}
    for scorer, method in scorers:
      print('computing %s score...' % (scorer.method()))
      score, scores = scorer.compute_score(gts, res)
      if type(method) == list:
        for sc, scs, m in zip(score, scores, method):
          score_dict[m] = sc
          print("%s: %0.3f" % (m, sc))
      else:
        score_dict[method] = score
        print("%s: %0.3f" % (method, score))

    return score_dict 
开发者ID:jiasenlu,项目名称:NeuralBabyTalk,代码行数:35,代码来源:coco_eval.py

示例12: __init__

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def __init__(self, n=4):
        implementation = bleu.Bleu(n)
        super(BLEU, self).__init__('bleu', implementation)
        self._n = n 
开发者ID:danieljl,项目名称:keras-image-captioning,代码行数:6,代码来源:metrics.py

示例13: cal_BLEU_4

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def cal_BLEU_4(generated, reference, is_corpus=False):
    BLEUscore = [0.0, 0.0, 0.0, 0.0]
    for idx, g in enumerate(generated):
        if is_corpus:
            score, scores = Bleu(4).compute_score(reference, {0: [g]})
        else:
            score, scores = Bleu(4).compute_score({0: [reference[0][idx]]},
                                                  {0: [g]})
        for i, s in zip([0, 1, 2, 3], score):
            BLEUscore[i] += s
    BLEUscore[0] = BLEUscore[0]/len(generated)
    BLEUscore[1] = BLEUscore[1]/len(generated)
    BLEUscore[2] = BLEUscore[2]/len(generated)
    BLEUscore[3] = BLEUscore[3]/len(generated)
    return BLEUscore 
开发者ID:microsoft,项目名称:DialoGPT,代码行数:17,代码来源:eval_utils.py

示例14: __init__

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def __init__(self, ground_truth_filenames=None, prediction_filename=None,
                 tious=None, max_proposals=1000,
                 prediction_fields=PREDICTION_FIELDS, verbose=False):
        # Check that the gt and submission files exist and load them
        if len(tious) == 0:
            raise IOError('Please input a valid tIoU.')
        if not ground_truth_filenames:
            raise IOError('Please input a valid ground truth file.')
        if not prediction_filename:
            raise IOError('Please input a valid prediction file.')

        self.verbose = verbose
        self.tious = tious
        self.max_proposals = max_proposals
        self.pred_fields = prediction_fields
        self.ground_truths = self.import_ground_truths(ground_truth_filenames)
        self.prediction = self.import_prediction(prediction_filename)
        self.tokenizer = PTBTokenizer()

        # Set up scorers, if not verbose, we only use the one we're
        # testing on: METEOR
        if self.verbose:
            self.scorers = [
                (Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
                (Meteor(),"METEOR"),
                (Rouge(), "ROUGE_L"),
                (Cider(), "CIDEr")
            ]
        else:
            self.scorers = [(Meteor(), "METEOR")] 
开发者ID:JaywongWang,项目名称:DenseVideoCaptioning,代码行数:32,代码来源:evaluate_old.py

示例15: get_scores

# 需要导入模块: from pycocoevalcap.bleu import bleu [as 别名]
# 或者: from pycocoevalcap.bleu.bleu import Bleu [as 别名]
def get_scores(data_gts, gen_result, opt):
    batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img
    seq_per_img = batch_size // len(data_gts)

    res = OrderedDict()
    
    gen_result = gen_result.data.cpu().numpy()
    for i in range(batch_size):
        res[i] = [array_to_str(gen_result[i])]

    gts = OrderedDict()
    for i in range(len(data_gts)):
        gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))]

    res_ = [{'image_id':i, 'caption': res[i]} for i in range(batch_size)]
    res__ = {i: res[i] for i in range(batch_size)}
    gts = {i: gts[i // seq_per_img] for i in range(batch_size)}
    if opt.cider_reward_weight > 0:
        _, cider_scores = CiderD_scorer.compute_score(gts, res_)
        print('Cider scores:', _)
    else:
        cider_scores = 0
    if opt.bleu_reward_weight > 0:
        _, bleu_scores = Bleu_scorer.compute_score(gts, res__)
        bleu_scores = np.array(bleu_scores[3])
        print('Bleu scores:', _[3])
    else:
        bleu_scores = 0

    scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores

    return scores 
开发者ID:ruotianluo,项目名称:GoogleConceptualCaptioning,代码行数:34,代码来源:rewards.py


注:本文中的pycocoevalcap.bleu.bleu.Bleu方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。