本文整理汇总了Python中pybullet.getMatrixFromQuaternion方法的典型用法代码示例。如果您正苦于以下问题:Python pybullet.getMatrixFromQuaternion方法的具体用法?Python pybullet.getMatrixFromQuaternion怎么用?Python pybullet.getMatrixFromQuaternion使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybullet
的用法示例。
在下文中一共展示了pybullet.getMatrixFromQuaternion方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: is_fallen
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def is_fallen(self):
"""Decide whether the minitaur has fallen.
If the up directions between the base and the world is larger (the dot
product is smaller than 0.85) or the base is very low on the ground
(the height is smaller than 0.13 meter), the minitaur is considered fallen.
Returns:
Boolean value that indicates whether the minitaur has fallen.
"""
orientation = self.minitaur.GetBaseOrientation()
rot_mat = self._pybullet_client.getMatrixFromQuaternion(orientation)
local_up = rot_mat[6:]
pos = self.minitaur.GetBasePosition()
return (np.dot(np.asarray([0, 0, 1]), np.asarray(local_up)) < 0.85 or
pos[2] < 0.13)
示例2: _reward
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def _reward(self):
current_base_position = self.minitaur.GetBasePosition()
forward_reward = current_base_position[0] - self._last_base_position[0]
# Cap the forward reward if a cap is set.
forward_reward = min(forward_reward, self._forward_reward_cap)
# Penalty for sideways translation.
drift_reward = -abs(current_base_position[1] - self._last_base_position[1])
# Penalty for sideways rotation of the body.
orientation = self.minitaur.GetBaseOrientation()
rot_matrix = pybullet.getMatrixFromQuaternion(orientation)
local_up_vec = rot_matrix[6:]
shake_reward = -abs(np.dot(np.asarray([1, 1, 0]), np.asarray(local_up_vec)))
energy_reward = -np.abs(
np.dot(self.minitaur.GetMotorTorques(),
self.minitaur.GetMotorVelocities())) * self._time_step
objectives = [forward_reward, energy_reward, drift_reward, shake_reward]
weighted_objectives = [
o * w for o, w in zip(objectives, self._objective_weights)
]
reward = sum(weighted_objectives)
self._objectives.append(objectives)
return reward
示例3: is_fallen
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def is_fallen(self):
"""Decide whether the minitaur has fallen.
If the up directions between the base and the world is larger (the dot
product is smaller than 0.85) or the base is very low on the ground
(the height is smaller than 0.13 meter), the minitaur is considered fallen.
Returns:
Boolean value that indicates whether the minitaur has fallen.
"""
orientation = self.robot.GetBaseOrientation()
rot_mat = pybullet.getMatrixFromQuaternion(orientation)
local_up = rot_mat[6:]
pos = self.robot.GetBasePosition()
#return (np.dot(np.asarray([0, 0, 1]), np.asarray(local_up)) < 0.85 or
# pos[2] < 0.13)
return False
示例4: _reward
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def _reward(self):
current_base_position = self.rex.GetBasePosition()
# forward direction
forward_reward = -current_base_position[0] + self._last_base_position[0]
# Cap the forward reward if a cap is set.
forward_reward = min(forward_reward, self._forward_reward_cap)
# Penalty for sideways translation.
drift_reward = -abs(current_base_position[1] - self._last_base_position[1])
# Penalty for sideways rotation of the body.
orientation = self.rex.GetBaseOrientation()
rot_matrix = pybullet.getMatrixFromQuaternion(orientation)
local_up_vec = rot_matrix[6:]
shake_reward = -abs(np.dot(np.asarray([1, 1, 0]), np.asarray(local_up_vec)))
energy_reward = -np.abs(
np.dot(self.rex.GetMotorTorques(),
self.rex.GetMotorVelocities())) * self._time_step
objectives = [forward_reward, energy_reward, drift_reward, shake_reward]
weighted_objectives = [o * w for o, w in zip(objectives, self._objective_weights)]
reward = sum(weighted_objectives)
self._objectives.append(objectives)
return reward
示例5: is_fallen
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def is_fallen():
global minitaur
orientation = minitaur.getBaseOrientation()
rotMat = p.getMatrixFromQuaternion(orientation)
localUp = rotMat[6:]
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0
示例6: getExtendedObservation
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def getExtendedObservation(self):
self._observation = self._kuka.getObservation()
gripperState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaGripperIndex)
gripperPos = gripperState[0]
gripperOrn = gripperState[1]
blockPos,blockOrn = p.getBasePositionAndOrientation(self.blockUid)
invGripperPos,invGripperOrn = p.invertTransform(gripperPos,gripperOrn)
gripperMat = p.getMatrixFromQuaternion(gripperOrn)
dir0 = [gripperMat[0],gripperMat[3],gripperMat[6]]
dir1 = [gripperMat[1],gripperMat[4],gripperMat[7]]
dir2 = [gripperMat[2],gripperMat[5],gripperMat[8]]
gripperEul = p.getEulerFromQuaternion(gripperOrn)
#print("gripperEul")
#print(gripperEul)
blockPosInGripper,blockOrnInGripper = p.multiplyTransforms(invGripperPos,invGripperOrn,blockPos,blockOrn)
projectedBlockPos2D =[blockPosInGripper[0],blockPosInGripper[1]]
blockEulerInGripper = p.getEulerFromQuaternion(blockOrnInGripper)
#print("projectedBlockPos2D")
#print(projectedBlockPos2D)
#print("blockEulerInGripper")
#print(blockEulerInGripper)
#we return the relative x,y position and euler angle of block in gripper space
blockInGripperPosXYEulZ =[blockPosInGripper[0],blockPosInGripper[1],blockEulerInGripper[2]]
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir0[0],gripperPos[1]+dir0[1],gripperPos[2]+dir0[2]],[1,0,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir1[0],gripperPos[1]+dir1[1],gripperPos[2]+dir1[2]],[0,1,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir2[0],gripperPos[1]+dir2[1],gripperPos[2]+dir2[2]],[0,0,1],lifeTime=1)
self._observation.extend(list(blockInGripperPosXYEulZ))
return self._observation
示例7: mat33_from_quat
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def mat33_from_quat(quat):
quat = list(quat)
mat33 = p.getMatrixFromQuaternion(quat)
return np.reshape(mat33, [3, 3])
示例8: mat33_from_euler
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def mat33_from_euler(euler):
euler = list(euler)
quat = p.getQuaternionFromEuler(euler)
mat33 = p.getMatrixFromQuaternion(quat)
return np.reshape(mat33, [3, 3])
示例9: pos_in_frame
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def pos_in_frame(pos, frame):
frame_xyz = frame[0]
frame_rpy = frame[1]
quat = p.getQuaternionFromEuler(frame_rpy)
mat33 = p.getMatrixFromQuaternion(quat)
mat33 = np.reshape(mat33, [3, 3])
pos_in_frame = frame_xyz + np.dot(pos, mat33.T)
return pos_in_frame
示例10: get_body_mat33
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def get_body_mat33(body):
_, quat = p.getBasePositionAndOrientation(body)
mat33 = p.getMatrixFromQuaternion(quat)
return np.reshape(mat33, [3, 3])
示例11: _getCameraImage
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def _getCameraImage(self):
"""
INTERNAL METHOD, Computes the OpenGL virtual camera image. The
resolution and the projection matrix have to be computed before calling
this method, or it will crash
Returns:
camera_image - The camera image of the OpenGL virtual camera
"""
_, _, _, _, pos_world, q_world = pybullet.getLinkState(
self.robot_model,
self.camera_link.getParentIndex(),
computeForwardKinematics=False,
physicsClientId=self.physics_client)
rotation = pybullet.getMatrixFromQuaternion(q_world)
forward_vector = [rotation[0], rotation[3], rotation[6]]
up_vector = [rotation[2], rotation[5], rotation[8]]
camera_target = [
pos_world[0] + forward_vector[0] * 10,
pos_world[1] + forward_vector[1] * 10,
pos_world[2] + forward_vector[2] * 10]
view_matrix = pybullet.computeViewMatrix(
pos_world,
camera_target,
up_vector,
physicsClientId=self.physics_client)
with self.resolution_lock:
camera_image = pybullet.getCameraImage(
self.resolution.width,
self.resolution.height,
view_matrix,
self.projection_matrix,
renderer=pybullet.ER_BULLET_HARDWARE_OPENGL,
flags=pybullet.ER_NO_SEGMENTATION_MASK,
physicsClientId=self.physics_client)
return camera_image
示例12: is_fallen
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def is_fallen(self):
"""Decide whether Rex has fallen.
If the up directions between the base and the world is larger (the dot
product is smaller than 0.85) or the base is very low on the ground
(the height is smaller than 0.13 meter), rex is considered fallen.
Returns:
Boolean value that indicates whether rex has fallen.
"""
orientation = self.rex.GetBaseOrientation()
rot_mat = self._pybullet_client.getMatrixFromQuaternion(orientation)
local_up = rot_mat[6:]
return np.dot(np.asarray([0, 0, 1]), np.asarray(local_up)) < 0.85
示例13: render
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def render(robot):
pos, rot, _, _, _, _ = p.getLinkState(robot.robot_id, linkIndex=robot.end_eff_idx, computeForwardKinematics=True)
rot_matrix = p.getMatrixFromQuaternion(rot)
rot_matrix = np.array(rot_matrix).reshape(3, 3)
# camera params
height = 640
width = 480
fx, fy = 596.6278076171875, 596.6278076171875
cx, cy = 311.98663330078125, 236.76170349121094
near, far = 0.1, 10
camera_vector = rot_matrix.dot((0, 0, 1))
up_vector = rot_matrix.dot((0, -1, 0))
camera_eye_pos = np.array(pos)
camera_target_position = camera_eye_pos + 0.2 * camera_vector
view_matrix = p.computeViewMatrix(camera_eye_pos, camera_target_position, up_vector)
proj_matrix = (2.0 * fx / width, 0.0, 0.0, 0.0,
0.0, 2.0 * fy / height, 0.0, 0.0,
1.0 - 2.0 * cx / width, 2.0 * cy / height - 1.0, (far + near) / (near - far), -1.0,
0.0, 0.0, 2.0 * far * near / (near - far), 0.0)
p.getCameraImage(width=width, height=height, viewMatrix=view_matrix, projectionMatrix=proj_matrix,
renderer=p.ER_BULLET_HARDWARE_OPENGL) # renderer=self._p.ER_TINY_RENDERER)
示例14: get_image
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import getMatrixFromQuaternion [as 别名]
def get_image(cam_pos, cam_orientation):
"""
Arguments
cam_pos: camera position
cam_orientation: camera orientation in quaternion
"""
width = 160
height = 120
fov = 90
aspect = width / height
near = 0.001
far = 5
if use_maximal_coordinates:
# cam_orientation has problem when enable bt_rigid_body,
# looking at 0.0, 0.0, 0.0 instead
# this does not affect performance
cam_pos_offset = cam_pos + np.array([0.0, 0.0, 0.3])
target_pos = np.array([0.0, 0.0, 0.0])
else:
# camera pos, look at, camera up direction
rot_matrix = p.getMatrixFromQuaternion(cam_orientation)
# offset to base pos
cam_pos_offset = cam_pos + np.dot(
np.array(rot_matrix).reshape(3, 3), np.array([0.1, 0.0, 0.3]))
target_pos = cam_pos_offset + np.dot(
np.array(rot_matrix).reshape(3, 3), np.array([-1.0, 0.0, 0.0]))
# compute view matrix
view_matrix = p.computeViewMatrix(cam_pos_offset, target_pos, [0, 0, 1])
projection_matrix = p.computeProjectionMatrixFOV(fov, aspect, near, far)
# Get depth values using the OpenGL renderer
if enable_open_gl_rendering:
w, h, rgb, depth, seg = p.getCameraImage(
width,
height,
view_matrix,
projection_matrix,
shadow=True,
renderer=p.ER_BULLET_HARDWARE_OPENGL)
else:
w, h, rgb, depth, seg = p.getCameraImage(
width,
height,
view_matrix,
projection_matrix,
shadow=True,
renderer=p.ER_TINY_RENDERER)
# depth_buffer = np.reshape(images[3], [width, height])
# depth = far * near / (far - (far - near) * depth_buffer)
# seg = np.reshape(images[4],[width,height])*1./255.
return rgb