本文整理汇总了Python中pybullet.computeViewMatrix方法的典型用法代码示例。如果您正苦于以下问题:Python pybullet.computeViewMatrix方法的具体用法?Python pybullet.computeViewMatrix怎么用?Python pybullet.computeViewMatrix使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybullet
的用法示例。
在下文中一共展示了pybullet.computeViewMatrix方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: take_picture
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import computeViewMatrix [as 别名]
def take_picture(renderer, width=256, height=256, scale=0.001, conn_id=None):
view_matrix = p.computeViewMatrix(
[0, 0, -1], [0, 0, 0], [0, -1, 0], physicsClientId=conn_id
)
proj_matrix = p.computeProjectionMatrixFOV(
20, 1, 0.05, 2, physicsClientId=conn_id
)
w, h, rgba, depth, mask = p.getCameraImage(
width=width,
height=height,
projectionMatrix=proj_matrix,
viewMatrix=view_matrix,
renderer=renderer,
physicsClientId=conn_id,
)
return rgba
示例2: render
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import computeViewMatrix [as 别名]
def render(self):
if np.all(self._rendered_pos == self.camera_pos) and np.all(self._rendered_rot == self.camera_rot):
return self._rendered
target = self.camera_pos + np.dot(self.camera_rot, [0, 0, 1.0, 1.0])[0:3]
up = np.dot(self.camera_rot, [0, -1.0, 0, 1.0])[0:3]
vm = pb.computeViewMatrix(self.camera_pos, target, up)
i_arr = pb.getCameraImage(self.im_width, self.im_height, vm, self.pm,
shadow=0,
renderer=pb.ER_TINY_RENDERER)
# renderer=pb.ER_BULLET_HARDWARE_OPENGL)
# Record the position of the camera, and don't re-render if it hasn't moved.
self._rendered = i_arr
self._rendered_pos = self.camera_pos.copy()
self._rendered_rot = self.camera_rot.copy()
return i_arr
示例3: _getCameraImage
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import computeViewMatrix [as 别名]
def _getCameraImage(self):
"""
INTERNAL METHOD, Computes the OpenGL virtual camera image. The
resolution and the projection matrix have to be computed before calling
this method, or it will crash
Returns:
camera_image - The camera image of the OpenGL virtual camera
"""
_, _, _, _, pos_world, q_world = pybullet.getLinkState(
self.robot_model,
self.camera_link.getParentIndex(),
computeForwardKinematics=False,
physicsClientId=self.physics_client)
rotation = pybullet.getMatrixFromQuaternion(q_world)
forward_vector = [rotation[0], rotation[3], rotation[6]]
up_vector = [rotation[2], rotation[5], rotation[8]]
camera_target = [
pos_world[0] + forward_vector[0] * 10,
pos_world[1] + forward_vector[1] * 10,
pos_world[2] + forward_vector[2] * 10]
view_matrix = pybullet.computeViewMatrix(
pos_world,
camera_target,
up_vector,
physicsClientId=self.physics_client)
with self.resolution_lock:
camera_image = pybullet.getCameraImage(
self.resolution.width,
self.resolution.height,
view_matrix,
self.projection_matrix,
renderer=pybullet.ER_BULLET_HARDWARE_OPENGL,
flags=pybullet.ER_NO_SEGMENTATION_MASK,
physicsClientId=self.physics_client)
return camera_image
示例4: render
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import computeViewMatrix [as 别名]
def render(robot):
pos, rot, _, _, _, _ = p.getLinkState(robot.robot_id, linkIndex=robot.end_eff_idx, computeForwardKinematics=True)
rot_matrix = p.getMatrixFromQuaternion(rot)
rot_matrix = np.array(rot_matrix).reshape(3, 3)
# camera params
height = 640
width = 480
fx, fy = 596.6278076171875, 596.6278076171875
cx, cy = 311.98663330078125, 236.76170349121094
near, far = 0.1, 10
camera_vector = rot_matrix.dot((0, 0, 1))
up_vector = rot_matrix.dot((0, -1, 0))
camera_eye_pos = np.array(pos)
camera_target_position = camera_eye_pos + 0.2 * camera_vector
view_matrix = p.computeViewMatrix(camera_eye_pos, camera_target_position, up_vector)
proj_matrix = (2.0 * fx / width, 0.0, 0.0, 0.0,
0.0, 2.0 * fy / height, 0.0, 0.0,
1.0 - 2.0 * cx / width, 2.0 * cy / height - 1.0, (far + near) / (near - far), -1.0,
0.0, 0.0, 2.0 * far * near / (near - far), 0.0)
p.getCameraImage(width=width, height=height, viewMatrix=view_matrix, projectionMatrix=proj_matrix,
renderer=p.ER_BULLET_HARDWARE_OPENGL) # renderer=self._p.ER_TINY_RENDERER)
示例5: __init__
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import computeViewMatrix [as 别名]
def __init__(self,
n_actions, # Dimension of action vector.
n_substeps, # Number of simulation steps to do in every env step.
observation_type="low_dim",
done_after=float("inf"),
use_gui=False,
frame_memory_len=0):
self.n_substeps = n_substeps
self.metadata = {
'render.modes': ['rgbd_array'],
'video.frames_per_second': int(np.round(1.0 / self.dt))
}
self.numSteps = 0
if use_gui:
physics_client = p.connect(p.GUI)
else:
physics_client = p.connect(p.DIRECT)
self.p = PhysClientWrapper(p, physics_client)
self.p.setAdditionalSearchPath(pybullet_data.getDataPath())
self.doneAfter = done_after
self.observation_type = observation_type
self.seed()
self.frameMemoryLen = frame_memory_len
if frame_memory_len:
self.frameMemory = deque(maxlen=frame_memory_len)
self.viewMatrix = p.computeViewMatrix([-1.05, 0, 0.68], [0.1, 0, 0],
[-0.5, 0, 1])
self.projMatrix = p.computeProjectionMatrixFOV(
fov=45, aspect=4. / 3., nearVal=0.01, farVal=2.5)
self.light = {
"diffuse": 0.4,
"ambient": 0.5,
"spec": 0.2,
"dir": [10, 10, 100],
"col": [1, 1, 1]
}
self._env_setup(initial_qpos=None)
self.action_space = spaces.Box(
-1, 1, shape=(n_actions, ), dtype='float32')
self.pixels_space = spaces.Box(
-np.inf, np.inf, shape=(84, 84, 3), dtype='float32')
if observation_type == "low_dim":
self.observation_space = self.low_dim_space
elif observation_type == "pixels":
self.observation_space = self.pixels_space
elif observation_type == "pixels_stacked":
self.observation_space = spaces.Box(
-np.inf, np.inf, shape=(84, 84, 12), dtype='float32')
elif observation_type == "pixels_depth":
self.observation_space = spaces.Box(
-np.inf, np.inf, shape=(84, 84), dtype='float32')
else:
raise Exception("Unimplemented observation_type")
示例6: __init__
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import computeViewMatrix [as 别名]
def __init__(self,
display=True,
data_dir='./data',
verbose=False,
key=None,
camera_params={}):
self._pe = BulletPhysicsEngine()
self._display = display
self._data_dir = data_dir
self._verbose = verbose
self._bodies = None
self._robots = None
self._time_step = None
self._ctrl_listeners = []
self._key_dict = None
self._key_act_dict = None
self._modifier_dict = None
# Camera Parameters
fov = camera_params.get('fov', 60)
aspect = camera_params.get('aspect', 1)
near = camera_params.get('near', 0.02)
far = camera_params.get('far', 1)
view_matrix = camera_params.get(
'view_matrix',
[[0.0, -0.4, 1.4], [0, 0.0, 0], [1, 0, 0]]
)
self.view_matrix = p.computeViewMatrix(*view_matrix)
self.projection_matrix = p.computeProjectionMatrixFOV(
fov, aspect, near, far)
self.video_log_key = 0
# Connect to the simulation
# TODO(Kuan): If VR
# p.connect(p.SHARED_MEMORY)
if self._display:
p.connect(p.GUI)
else:
if key is None:
p.connect(p.DIRECT)
else:
p.connect(p.DIRECT, key=key)
示例7: get_image
# 需要导入模块: import pybullet [as 别名]
# 或者: from pybullet import computeViewMatrix [as 别名]
def get_image(cam_pos, cam_orientation):
"""
Arguments
cam_pos: camera position
cam_orientation: camera orientation in quaternion
"""
width = 160
height = 120
fov = 90
aspect = width / height
near = 0.001
far = 5
if use_maximal_coordinates:
# cam_orientation has problem when enable bt_rigid_body,
# looking at 0.0, 0.0, 0.0 instead
# this does not affect performance
cam_pos_offset = cam_pos + np.array([0.0, 0.0, 0.3])
target_pos = np.array([0.0, 0.0, 0.0])
else:
# camera pos, look at, camera up direction
rot_matrix = p.getMatrixFromQuaternion(cam_orientation)
# offset to base pos
cam_pos_offset = cam_pos + np.dot(
np.array(rot_matrix).reshape(3, 3), np.array([0.1, 0.0, 0.3]))
target_pos = cam_pos_offset + np.dot(
np.array(rot_matrix).reshape(3, 3), np.array([-1.0, 0.0, 0.0]))
# compute view matrix
view_matrix = p.computeViewMatrix(cam_pos_offset, target_pos, [0, 0, 1])
projection_matrix = p.computeProjectionMatrixFOV(fov, aspect, near, far)
# Get depth values using the OpenGL renderer
if enable_open_gl_rendering:
w, h, rgb, depth, seg = p.getCameraImage(
width,
height,
view_matrix,
projection_matrix,
shadow=True,
renderer=p.ER_BULLET_HARDWARE_OPENGL)
else:
w, h, rgb, depth, seg = p.getCameraImage(
width,
height,
view_matrix,
projection_matrix,
shadow=True,
renderer=p.ER_TINY_RENDERER)
# depth_buffer = np.reshape(images[3], [width, height])
# depth = far * near / (far - (far - near) * depth_buffer)
# seg = np.reshape(images[4],[width,height])*1./255.
return rgb