本文整理汇总了Python中pybrain.supervised.trainers.BackpropTrainer方法的典型用法代码示例。如果您正苦于以下问题:Python trainers.BackpropTrainer方法的具体用法?Python trainers.BackpropTrainer怎么用?Python trainers.BackpropTrainer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.supervised.trainers
的用法示例。
在下文中一共展示了trainers.BackpropTrainer方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_nn
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def get_nn(self, train=True):
train_data, results_data = self.get_train_and_test_data()
DS = self.create_DS(train_data)
try:
import arac # noqa
print("ARAC Available, using fast mode network builder!")
FNN = buildNetwork(DS.indim, self.hiddenneurons, DS.outdim, bias=self.bias, recurrent=self.recurrent,
fast=True)
except ImportError:
FNN = buildNetwork(DS.indim, self.hiddenneurons, DS.outdim, bias=self.bias, recurrent=self.recurrent)
FNN.randomize()
TRAINER = BackpropTrainer(FNN, dataset=DS, learningrate=self.learningrate,
momentum=self.momentum, verbose=False, weightdecay=self.weightdecay)
if train:
for i in range(self.epochs):
TRAINER.train()
self.nn = FNN
return FNN
示例2: fitANN
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def fitANN(data):
'''
Build a neural network regressor
'''
# determine the number of inputs and outputs
inputs_cnt = data['input'].shape[1]
target_cnt = data['target'].shape[1]
# create the regressor object
ann = pb.buildNetwork(inputs_cnt,
inputs_cnt * 3,
target_cnt,
hiddenclass=st.TanhLayer,
outclass=st.LinearLayer,
bias=True
)
# create the trainer object
trainer = tr.BackpropTrainer(ann, data,
verbose=True, batchlearning=False)
# and train the network
trainer.trainUntilConvergence(maxEpochs=50, verbose=True,
continueEpochs=2, validationProportion=0.25)
# and return the regressor
return ann
# the file name of the dataset
示例3: fitANN
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def fitANN(data):
'''
Build a neural network classifier
'''
# determine the number of inputs and outputs
inputs_cnt = data['input'].shape[1]
target_cnt = data['target'].shape[1]
# create the classifier object
ann = pb.buildNetwork(inputs_cnt,
inputs_cnt * 2,
inputs_cnt / 2,
target_cnt,
hiddenclass=st.SigmoidLayer,
outclass=st.SoftmaxLayer,
bias=True
)
# create the trainer object
trainer = tr.BackpropTrainer(ann, data,
verbose=True, batchlearning=False)
# and train the network
trainer.trainUntilConvergence(maxEpochs=50, verbose=True,
continueEpochs=3, validationProportion=0.25)
# and return the classifier
return ann
# the file name of the dataset
示例4: fitANN
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def fitANN(data):
'''
Build a neural network classifier
'''
# determine the number of inputs and outputs
inputs_cnt = data['input'].shape[1]
target_cnt = data['target'].shape[1]
# create the classifier object
ann = pb.buildNetwork(inputs_cnt,
inputs_cnt * 2,
target_cnt,
hiddenclass=st.TanhLayer,
outclass=st.SoftmaxLayer,
bias=True
)
# create the trainer object
trainer = tr.BackpropTrainer(ann, data,
verbose=True, batchlearning=False)
# and train the network
trainer.trainUntilConvergence(maxEpochs=50, verbose=True,
continueEpochs=3, validationProportion=0.25)
# and return the classifier
return ann
# the file name of the dataset
示例5: learn
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def learn(self, train_data = None, seed = None):
"""
Performs single run training, and it is designed to be called after network instantiation.
----------
train_data: pandas Dataframe
It needs to contain datetime objects on index, and both features and target variables.
The target variables need to end with the suffix "_tau". If None the self.train_set
variable passed at the moment of instantiation will be used.
Returns: tuple(MP_Pybrain object,float)
It returns the model with the lowest training error, and the value of the training error.
"""
if train_data is not None:
self.train_set = train_data
self.randomize()
ds_train, ds_valid = self._build_dataset(self.train_set)
trainer = BackpropTrainer(self.N, ds_train, learningrate=self.learning_rate,
momentum=self.momentum,batchlearning=self.batch)
trainer.train()
e_train = [self._error(ds_train)]
e_valid = [self._error(ds_valid)]
final_model = copy(self)
fin_error_train = e_train[0]
fin_error_valid = e_valid[0]
for i in range(1,self.epochs):
if i%10 == 0:
print "epoch: ", i
trainer.train()
e_train.append(self._error(ds_train))
e_valid.append(self._error(ds_valid))
if e_train[-1] < fin_error_train:
final_model = deepcopy(self)
fin_error_train = e_train[-1]
fin_error_valid = e_valid[-1]
return final_model, fin_error_train, fin_error_valid
示例6: fit_predict
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def fit_predict(xTrain,yTrain,xTest,epochs,neurons):
# Check edge cases
if (not len(xTrain) == len(yTrain) or len(xTrain) == 0 or
len(xTest) == 0 or epochs <= 0):
return
# Randomize the training data (probably not necessary but pybrain might
# not shuffle the data itself, so perform as safety check)
indices = np.arange(len(xTrain))
np.random.shuffle(indices)
trainSwapX = [xTrain[x] for x in indices]
trainSwapY = [yTrain[x] for x in indices]
supTrain = SupervisedDataSet(len(xTrain[0]),1)
for x in range(len(trainSwapX)):
supTrain.addSample(trainSwapX[x],trainSwapY[x])
# Construct the feed-forward neural network
n = FeedForwardNetwork()
inLayer = LinearLayer(len(xTrain[0]))
hiddenLayer1 = SigmoidLayer(neurons)
outLayer = LinearLayer(1)
n.addInputModule(inLayer)
n.addModule(hiddenLayer1)
n.addOutputModule(outLayer)
in_to_hidden = FullConnection(inLayer, hiddenLayer1)
hidden_to_out = FullConnection(hiddenLayer1, outLayer)
n.addConnection(in_to_hidden)
n.addConnection(hidden_to_out)
n.sortModules()
# Train the neural network on the training partition, validating
# the training progress on the validation partition
trainer = BackpropTrainer(n,dataset=supTrain,momentum=0.1,learningrate=0.01
,verbose=False,weightdecay=0.01)
trainer.trainUntilConvergence(dataset=supTrain,
maxEpochs=epochs,validationProportion=0.30)
outputs = []
for x in xTest:
outputs.append(n.activate(x))
return outputs
示例7: build_network
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def build_network():
# get iris data
iris = datasets.load_iris()
d,t = iris.data, iris.target
# build dataset
ds = _get_classification_dataset()
for i in range(len(d)):
ds.addSample(d[i],t[i])
print "Dataset input: {}".format(ds['input'])
print "Dataset output: {}".format(ds['target'])
print "Dataset input length: {}".format(len(ds['input']))
print "Dataset output length: {}".format(len(ds['target']))
print "Dataset length: {}".format(len(ds))
print "Dataset input|output dimensions are {}|{}".format(ds.indim, ds.outdim)
# split dataset
train_data,test_data = _split_with_proportion(ds, 0.70)
print "Train Data length: {}".format(len(train_data))
print "Test Data length: {}".format(len(test_data))
# encode with one output neuron per class
train_data._convertToOneOfMany()
test_data._convertToOneOfMany()
print "Train Data input|output dimensions are {}|{}".format(train_data.indim, train_data.outdim)
print "Test Data input|output dimensions are {}|{}".format(test_data.indim, test_data.outdim)
# build network
network = buildNetwork(INPUT,HIDDEN,CLASSES,outclass=SoftmaxLayer)
# train network
trainer = BackpropTrainer(network,dataset=train_data,momentum=0.1,verbose=True,weightdecay=0.01)
trainer.trainOnDataset(train_data, 500)
print "Total epochs: {}".format(trainer.totalepochs)
# test network
output = network.activateOnDataset(test_data).argmax(axis=1)
print "Percent error: {}".format(percentError(output, test_data['class']))
# return network
return network
# classify data against neural network
示例8: build_network
# 需要导入模块: from pybrain.supervised import trainers [as 别名]
# 或者: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
def build_network(inputs,targets):
# build dataset
ds = _get_classification_dataset()
for i in range(len(inputs)):
ds.addSample(inputs[i],targets[i])
print "Dataset input: {}".format(ds['input'])
print "Dataset output: {}".format(ds['target'])
print "Dataset input length: {}".format(len(ds['input']))
print "Dataset output length: {}".format(len(ds['target']))
print "Dataset length: {}".format(len(ds))
print "Dataset input|output dimensions are {}|{}".format(ds.indim, ds.outdim)
# split dataset
train_data,test_data = _split_with_proportion(ds, 0.70)
print "Train Data length: {}".format(len(train_data))
print "Test Data length: {}".format(len(test_data))
# encode with one output neuron per class
train_data._convertToOneOfMany()
test_data._convertToOneOfMany()
print "Train Data input|output dimensions are {}|{}".format(train_data.indim, train_data.outdim)
print "Test Data input|output dimensions are {}|{}".format(test_data.indim, test_data.outdim)
# build network
network = buildNetwork(INPUT,HIDDEN,CLASSES,outclass=SoftmaxLayer)
# train network
trainer = BackpropTrainer(network,dataset=train_data,momentum=0.1,verbose=True,weightdecay=0.01)
trainer.trainUntilConvergence(dataset=train_data,maxEpochs=500)
print "Total epochs: {}".format(trainer.totalepochs)
# test network
output = network.activateOnDataset(test_data).argmax(axis=1)
print "Percent error: {}".format(percentError(output, test_data['class']))
# return network
return network
# classify input against neural network