本文整理汇总了Python中pybrain.datasets.SupervisedDataSet方法的典型用法代码示例。如果您正苦于以下问题:Python datasets.SupervisedDataSet方法的具体用法?Python datasets.SupervisedDataSet怎么用?Python datasets.SupervisedDataSet使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.datasets
的用法示例。
在下文中一共展示了datasets.SupervisedDataSet方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_cat_dog_trainset
# 需要导入模块: from pybrain import datasets [as 别名]
# 或者: from pybrain.datasets import SupervisedDataSet [as 别名]
def get_cat_dog_trainset():
count = 0
images = os.listdir(root.path() + '/res/cats_proc/')
shape = cv2.imread(root.path() + '/res/cats_proc/'+images[0],0).shape
ds = SupervisedDataSet(shape[0]*shape[1], 2)
for image in os.listdir(root.path() + '/res/cats_proc/'):
img = cv2.imread(root.path() + '/res/cats_proc/'+image,0)
inp = np.reshape(img, shape[0]*shape[1])
target = [1,0]
ds.addSample(inp, target)
count += 1
for image in os.listdir(root.path() + '/res/dogs_proc/'):
img = cv2.imread(root.path() + '/res/dogs_proc/'+image,0)
img = cv2.resize(img, img.shape, fx=0.5, fy=0.5)
inp = np.reshape(img, shape[0]*shape[1])
target = [0,1]
ds.addSample(inp, target)
count += 1
return ds
示例2: get_cat_dog_testset
# 需要导入模块: from pybrain import datasets [as 别名]
# 或者: from pybrain.datasets import SupervisedDataSet [as 别名]
def get_cat_dog_testset():
count = 0
images = os.listdir(root.path() + '/res/cats_proc/')
shape = cv2.imread(root.path() + '/res/cats_proc/'+images[0],0).shape
ds = SupervisedDataSet(shape[0]*shape[1], 2)
for image in os.listdir(root.path() + '/res/cats_proc/'):
img = cv2.imread(root.path() + '/res/cats_proc/'+image,0)
inp = np.reshape(img, shape[0]*shape[1])
target = [1,0]
ds.addSample(inp, target)
count += 1
for image in os.listdir(root.path() + '/res/dogs_proc/'):
img = cv2.imread(root.path() + '/res/dogs_proc/'+image,0)
img = cv2.resize(img, img.shape, fx=0.5, fy=0.5)
inp = np.reshape(img, shape[0]*shape[1])
target = [0,1]
ds.addSample(inp, target)
count += 1
return ds
# img = cv2.resize(img,(280, 280), interpolation = cv2.INTER_CUBIC)
# cv2.imwrite(root.path()+"/images/proc.jpg", img)
示例3: prepareANNDataset
# 需要导入模块: from pybrain import datasets [as 别名]
# 或者: from pybrain.datasets import SupervisedDataSet [as 别名]
def prepareANNDataset(data, prob=None):
'''
Method to prepare the dataset for ANN training
and testing
'''
# we only import this when preparing ANN dataset
import pybrain.datasets as dt
# supplementary method to convert list to tuple
def extract(row):
return tuple(row)
# get the number of inputs and outputs
inputs = len(data[0].columns)
outputs = len(data[1].axes) + 1
if prob == 'regression':
outputs -= 1
# create dataset object
dataset = dt.SupervisedDataSet(inputs, outputs)
# convert dataframes to lists of tuples
x = list(data[0].apply(extract, axis=1))
if prob == 'regression':
y = [(item) for item in data[1]]
else:
y = [(item,abs(item - 1)) for item in data[1]]
# and add samples to the ANN dataset
for x_item, y_item in zip(x,y):
dataset.addSample(x_item, y_item)
return dataset
示例4: get_new_data_set
# 需要导入模块: from pybrain import datasets [as 别名]
# 或者: from pybrain.datasets import SupervisedDataSet [as 别名]
def get_new_data_set(self):
input_number, output_number = self.meta_data
return SupervisedDataSet(input_number, output_number)
示例5: create_DS
# 需要导入模块: from pybrain import datasets [as 别名]
# 或者: from pybrain.datasets import SupervisedDataSet [as 别名]
def create_DS(self, data):
size = self.datasetinputs
DS = SupervisedDataSet(size, 1)
try:
for i, val in enumerate(data):
sample = create_sample_row(data, i, size)
target = data[i + size]
DS.addSample(sample, (target,))
except Exception as e:
if "list index out of range" not in str(e):
print(e)
return DS
示例6: _build_dataset
# 需要导入模块: from pybrain import datasets [as 别名]
# 或者: from pybrain.datasets import SupervisedDataSet [as 别名]
def _build_dataset(self, data):
"""
Given a input training Dataframe with features and targets it returns the formatted training and validation
datasets for pybrain usage, and randomly shuffled according to the self.seed given at instantiation.
----------
data: pandas Dataframe
It must contains both features and target columns
Returns: (pybrain dataset, pybrain dataset)
The first is the training dataset and the second is the validation dataset
"""
np.random.seed(self.seed)
permutation = np.random.permutation(np.arange(len(data)))
sep = int(self.train_fraction * len(data))
x = data[self.features]
y = data[self.targets]
ds_train = SupervisedDataSet(self.n_feature, self.n_target)
ds_valid = SupervisedDataSet(self.n_feature, self.n_target)
for i in permutation[:sep]:
ds_train.addSample(x.values[i], y.values[i])
for i in permutation[sep:]:
ds_valid.addSample(x.values[i], y.values[i])
return ds_train, ds_valid
示例7: fit_predict
# 需要导入模块: from pybrain import datasets [as 别名]
# 或者: from pybrain.datasets import SupervisedDataSet [as 别名]
def fit_predict(xTrain,yTrain,xTest,epochs,neurons):
# Check edge cases
if (not len(xTrain) == len(yTrain) or len(xTrain) == 0 or
len(xTest) == 0 or epochs <= 0):
return
# Randomize the training data (probably not necessary but pybrain might
# not shuffle the data itself, so perform as safety check)
indices = np.arange(len(xTrain))
np.random.shuffle(indices)
trainSwapX = [xTrain[x] for x in indices]
trainSwapY = [yTrain[x] for x in indices]
supTrain = SupervisedDataSet(len(xTrain[0]),1)
for x in range(len(trainSwapX)):
supTrain.addSample(trainSwapX[x],trainSwapY[x])
# Construct the feed-forward neural network
n = FeedForwardNetwork()
inLayer = LinearLayer(len(xTrain[0]))
hiddenLayer1 = SigmoidLayer(neurons)
outLayer = LinearLayer(1)
n.addInputModule(inLayer)
n.addModule(hiddenLayer1)
n.addOutputModule(outLayer)
in_to_hidden = FullConnection(inLayer, hiddenLayer1)
hidden_to_out = FullConnection(hiddenLayer1, outLayer)
n.addConnection(in_to_hidden)
n.addConnection(hidden_to_out)
n.sortModules()
# Train the neural network on the training partition, validating
# the training progress on the validation partition
trainer = BackpropTrainer(n,dataset=supTrain,momentum=0.1,learningrate=0.01
,verbose=False,weightdecay=0.01)
trainer.trainUntilConvergence(dataset=supTrain,
maxEpochs=epochs,validationProportion=0.30)
outputs = []
for x in xTest:
outputs.append(n.activate(x))
return outputs