本文整理汇总了Python中pyarrow.uint8方法的典型用法代码示例。如果您正苦于以下问题:Python pyarrow.uint8方法的具体用法?Python pyarrow.uint8怎么用?Python pyarrow.uint8使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyarrow
的用法示例。
在下文中一共展示了pyarrow.uint8方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_get_array_null_bitmap_as_byte_array
# 需要导入模块: import pyarrow [as 别名]
# 或者: from pyarrow import uint8 [as 别名]
def test_get_array_null_bitmap_as_byte_array(self):
array = pa.array([], type=pa.int32())
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(null_masks.equals(pa.array([], type=pa.uint8())))
array = pa.array([1, 2, None, 3, None], type=pa.int32())
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(
null_masks.equals(pa.array([0, 0, 1, 0, 1], type=pa.uint8())))
array = pa.array([1, 2, 3])
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(null_masks.equals(pa.array([0, 0, 0], type=pa.uint8())))
array = pa.array([None, None, None], type=pa.int32())
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(null_masks.equals(pa.array([1, 1, 1], type=pa.uint8())))
# Demonstrate that the returned array can be converted to a numpy boolean
# array w/o copying
np.testing.assert_equal(
np.array([True, True, True]), null_masks.to_numpy().view(np.bool))
示例2: _get_numeric_byte_size_test_cases
# 需要导入模块: import pyarrow [as 别名]
# 或者: from pyarrow import uint8 [as 别名]
def _get_numeric_byte_size_test_cases():
result = []
for array_type, sizeof in [
(pa.int8(), 1),
(pa.uint8(), 1),
(pa.int16(), 2),
(pa.uint16(), 2),
(pa.int32(), 4),
(pa.uint32(), 4),
(pa.int64(), 8),
(pa.uint64(), 8),
(pa.float32(), 4),
(pa.float64(), 8),
]:
result.append(
dict(
testcase_name=str(array_type),
array=pa.array(range(9), type=array_type),
slice_offset=2,
slice_length=3,
expected_size=(_all_false_null_bitmap_size(2) + sizeof * 9),
expected_sliced_size=(_all_false_null_bitmap_size(1) + sizeof * 3)))
return result
示例3: _get_numba_typ_from_pa_typ
# 需要导入模块: import pyarrow [as 别名]
# 或者: from pyarrow import uint8 [as 别名]
def _get_numba_typ_from_pa_typ(pa_typ):
import pyarrow as pa
_typ_map = {
# boolean
pa.bool_(): types.bool_,
# signed int types
pa.int8(): types.int8,
pa.int16(): types.int16,
pa.int32(): types.int32,
pa.int64(): types.int64,
# unsigned int types
pa.uint8(): types.uint8,
pa.uint16(): types.uint16,
pa.uint32(): types.uint32,
pa.uint64(): types.uint64,
# float types (TODO: float16?)
pa.float32(): types.float32,
pa.float64(): types.float64,
# String
pa.string(): string_type,
# date
pa.date32(): types.NPDatetime('ns'),
pa.date64(): types.NPDatetime('ns'),
# time (TODO: time32, time64, ...)
pa.timestamp('ns'): types.NPDatetime('ns'),
pa.timestamp('us'): types.NPDatetime('ns'),
pa.timestamp('ms'): types.NPDatetime('ns'),
pa.timestamp('s'): types.NPDatetime('ns'),
}
if pa_typ not in _typ_map:
raise ValueError("Arrow data type {} not supported yet".format(pa_typ))
return _typ_map[pa_typ]
示例4: _dtype_to_arrow_type
# 需要导入模块: import pyarrow [as 别名]
# 或者: from pyarrow import uint8 [as 别名]
def _dtype_to_arrow_type(dtype: np.dtype) -> pyarrow.DataType:
if dtype == np.int8:
return pyarrow.int8()
elif dtype == np.int16:
return pyarrow.int16()
elif dtype == np.int32:
return pyarrow.int32()
elif dtype == np.int64:
return pyarrow.int64()
elif dtype == np.uint8:
return pyarrow.uint8()
elif dtype == np.uint16:
return pyarrow.uint16()
elif dtype == np.uint32:
return pyarrow.uint32()
elif dtype == np.uint64:
return pyarrow.uint64()
elif dtype == np.float16:
return pyarrow.float16()
elif dtype == np.float32:
return pyarrow.float32()
elif dtype == np.float64:
return pyarrow.float64()
elif dtype.kind == "M":
# [2019-09-17] Pandas only allows "ns" unit -- as in, datetime64[ns]
# https://github.com/pandas-dev/pandas/issues/7307#issuecomment-224180563
assert dtype.str.endswith("[ns]")
return pyarrow.timestamp(unit="ns", tz=None)
elif dtype == np.object_:
return pyarrow.string()
else:
raise RuntimeError("Unhandled dtype %r" % dtype)
示例5: test_dataframe_uint8_column
# 需要导入模块: import pyarrow [as 别名]
# 或者: from pyarrow import uint8 [as 别名]
def test_dataframe_uint8_column(self):
assert_arrow_table_equals(
dataframe_to_arrow_table(
pd.DataFrame({"A": [1, 2, 3, 253]}, dtype=np.uint8),
[Column("A", ColumnType.NUMBER("{:,d}"))],
self.path,
),
arrow_table(
{"A": pyarrow.array([1, 2, 3, 253], type=pyarrow.uint8())},
[atypes.Column("A", atypes.ColumnType.Number("{:,d}"))],
),
)
示例6: test_arrow_uint8_column
# 需要导入模块: import pyarrow [as 别名]
# 或者: from pyarrow import uint8 [as 别名]
def test_arrow_uint8_column(self):
dataframe, columns = arrow_table_to_dataframe(
arrow_table(
{"A": pyarrow.array([1, 2, 3, 253], type=pyarrow.uint8())},
columns=[atypes.Column("A", atypes.ColumnType.Number("{:,d}"))],
)
)
assert_frame_equal(
dataframe, pd.DataFrame({"A": [1, 2, 3, 253]}, dtype=np.uint8)
)
self.assertEqual(columns, [Column("A", ColumnType.NUMBER("{:,d}"))])