本文整理汇总了Python中pulp.value方法的典型用法代码示例。如果您正苦于以下问题:Python pulp.value方法的具体用法?Python pulp.value怎么用?Python pulp.value使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pulp
的用法示例。
在下文中一共展示了pulp.value方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _process_duals
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def _process_duals(self, dmu_code, categories, func):
''' Helper function that adds duals to solution using given method func.
Helps to avoid code duplication.
Args:
dmu_code (str): DMU code under consideration.
categories (list of str): list of either input or output
categories.
func (function): a function that accepts DMU code, category and
dual variable value and adds it to solution.
'''
for category in categories:
constraint_name = self._constraints[category]
dual = self._concrete_model.process_dual_value(
self.lp_model.constraints[constraint_name].pi)
func(dmu_code, category, dual)
示例2: _get_efficiency_score
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def _get_efficiency_score(self, lambda_variable):
''' Returns efficiency score based on a given lambda variable.
Args:
lambda_variable (double): value of the lambda variable.
Returns:
double: efficiency spyDEA.core.
'''
eff_score = self._concrete_model.process_obj_var(pulp.value(
self.lp_model.objective))
# None is possible when objective function is zero
if eff_score is None:
eff_score = 0
if is_efficient(eff_score, lambda_variable):
eff_score = 1
return eff_score
示例3: word_mover_distance
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def word_mover_distance(first_sent_tokens, second_sent_tokens, wvmodel, distancefunc=euclidean, lpFile=None):
""" Compute the Word Mover's distance (WMD) between the two given lists of tokens.
Using methods of linear programming, supported by PuLP, calculate the WMD between two lists of words. A word-embedding
model has to be provided. WMD is returned.
Reference: Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q. Weinberger, "From Word Embeddings to Document Distances," *ICML* (2015).
:param first_sent_tokens: first list of tokens.
:param second_sent_tokens: second list of tokens.
:param wvmodel: word-embedding models.
:param distancefunc: distance function that takes two numpy ndarray.
:param lpFile: log file to write out.
:return: Word Mover's distance (WMD)
:type first_sent_tokens: list
:type second_sent_tokens: list
:type wvmodel: gensim.models.keyedvectors.KeyedVectors
:type distancefunc: function
:type lpFile: str
:rtype: float
"""
prob = word_mover_distance_probspec(first_sent_tokens, second_sent_tokens, wvmodel,
distancefunc=distancefunc, lpFile=lpFile)
return pulp.value(prob.objective)
示例4: __apply_initial_weights_override__
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def __apply_initial_weights_override__(self, weights_override={}, clear_before_override=None):
"""
:param clear_before_override: bool: if True, all weights are set to a default value, no matter what.
:param weights_override:
"""
if (weights_override):
if clear_before_override is not None:
print("Clearing summarizer weights")
for k, v in self.summarizer.weights.iteritems():
self.summarizer.weights[k] = float(clear_before_override)
print("Overriding weights")
for k, v in weights_override.iteritems():
if self.summarizer.weights.has_key(k):
print("Overriding summarizer weight for '%s' with '%s' (was '%s')" % (
k, v, self.summarizer.weights[k]))
self.summarizer.weights[k] = v
示例5: solve
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def solve(self):
super(_LP, self).solve()
objective = pulp.value(self.objective)
variables, values = [], []
for v in self.variables():
variables.append(v.name)
values.append(v.varValue)
status = pulp.LpStatus[self.status]
self.assignVarsVals(dict.fromkeys(variables, None))
return Result(status_code=self.status,
status=status,
objective=objective,
variables=variables,
values=values)
# =============================================================================
# CONCRETE CLASS
# =============================================================================
示例6: solve_simple
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def solve_simple(scene):
for cur in itertools.chain(scene.all_cells, scene.all_columns):
if isinstance(cur, Cell) and cur.display is Cell.unknown:
continue
if cur.value is not None and any(x.display is Cell.unknown for x in cur.members):
# Fill up remaining fulls
if cur.value == sum(1 for x in cur.members if x.display is not Cell.empty):
for x in cur.members:
if x.display is Cell.unknown:
yield x, Cell.full
# Fill up remaining empties
if len(cur.members)-cur.value == sum(1 for x in cur.members if x.display is not Cell.full):
for x in cur.members:
if x.display is Cell.unknown:
yield x, Cell.empty
示例7: _create_main_constraints
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def _create_main_constraints(self):
# Depending on what you need, you may want to consider creating any of
# the expressions (constraints or objective terms) as an attribute of
# the OptimizationModel class (e.g. self.inv_balance_constraints).
# That way if, for example, at the end of the optimization you need to check
# the slack variables of certain constraints, you know they already exists in your model
# ================== Inventory balance constraints ==================
self.inv_balance_constraints = {
period: add_constr(self.model, pulp.LpConstraint(
e=self.inventory_variables[period - 1] + self.production_variables[period]
- self.inventory_variables[period],
sense=pulp.LpConstraintEQ,
name='inv_balance' + str(period),
rhs=value.demand))
for period, value in self.input_data.iloc[1:].iterrows()}
# inv balance for first period
self.first_period_inv_balance_constraints = add_constr(self.model, pulp.LpConstraint(
e=self.production_variables[0] - self.inventory_variables[0],
sense=pulp.LpConstraintEQ,
name='inv_balance0',
rhs=self.input_data.iloc[0].demand - self.input_params['initial_inventory']))
# ================== Production capacity constraints ==================
self.production_capacity_constraints = {
index: add_constr(self.model, pulp.LpConstraint(
e=value,
sense=pulp.LpConstraintLE,
name='prod_cap_month_' + str(index),
rhs=self.input_data.iloc[index].production_capacity))
for index, value in self.production_variables.items()}
# ================== Costs and objective function ==================
示例8: get_minima
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def get_minima(self, phases, bounds):
"""
Given a set of Phases, get_minima will determine the minimum
free energy elemental composition as a weighted sum of these
compounds
"""
prob = pulp.LpProblem('GibbsEnergyMin', pulp.LpMinimize)
pvars = pulp.LpVariable.dicts('phase', phases, 0)
bvars = pulp.LpVariable.dicts('bound', bounds, 0.0, 1.0)
prob += pulp.lpSum( self.phase_energy(p)*pvars[p] for p in phases ) - \
pulp.lpSum( self.phase_energy(bound)*bvars[bound] for bound in bounds ), \
"Free Energy"
for elt in self.bound_space:
prob += sum([ p.unit_comp.get(elt,0)*pvars[p] for p in phases ])\
== \
sum([ b.unit_comp.get(elt, 0)*bvars[b] for b in bounds ]),\
'Contraint to the proper range of'+elt
prob += sum([ bvars[b] for b in bounds ]) == 1, \
'sum of bounds must be 1'
if pulp.GUROBI().available():
prob.solve(pulp.GUROBI(msg=False))
elif pulp.COIN_CMD().available():
prob.solve(pulp.COIN_CMD())
elif pulp.COINMP_DLL().available():
prob.solve(pulp.COINMP_DLL())
else:
prob.solve()
E = pulp.value(prob.objective)
xsoln = defaultdict(float,
[(p, pvars[p].varValue) for p in phases if
abs(pvars[p].varValue) > 1e-4])
return xsoln, E
示例9: compute_stabilities
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def compute_stabilities(self, phases=None, save=False, reevaluate=True):
"""
Calculate the stability for every Phase.
Keyword Arguments:
phases:
List of Phases. If None, uses every Phase in PhaseSpace.phases
save:
If True, save the value for stability to the database.
new_only:
If True, only compute the stability for Phases which did not
import a stability from the OQMD. False by default.
"""
from qmpy.analysis.vasp.calculation import Calculation
if phases is None:
phases = self.phases
if reevaluate:
for p in self.phases:
p.stability = None
for p in phases:
if p.stability is None:
if p in self.phase_dict.values():
self.compute_stability(p)
else:
p2 = self.phase_dict[p.name]
if p2.stability is None:
self.compute_stability(p2)
base = max(0, p2.stability)
diff = p.energy - p2.energy
p.stability = base + diff
if save:
qs = qmpy.FormationEnergy.objects.filter(id=p.id)
qs.update(stability=p.stability)
示例10: _fill_solution
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def _fill_solution(self, dmu_code, model_solution):
''' Fills given solution with data calculated for one DMU.
Args:
dmu_code (str): DMU code for which the LP was solved.
model_solution (Solution): object where solution for one DMU
will be written.
'''
model_solution.orientation = self._concrete_model.get_orientation()
model_solution.add_lp_status(dmu_code, self.lp_model.status)
if self.lp_model.status == pulp.LpStatusOptimal:
lambda_variables = dict()
for dmu in self.input_data.DMU_codes:
var = self._variables.get(dmu, None)
if (var is not None and var.varValue is not None and
abs(var.varValue) > ZERO_TOLERANCE):
lambda_variables[dmu] = var.varValue
if self._should_add_efficiency:
model_solution.add_efficiency_score(
dmu_code, self._concrete_model.process_obj_var
(pulp.value(self.lp_model.objective)))
model_solution.add_lambda_variables(dmu_code, lambda_variables)
self._process_duals(dmu_code, self.input_data.input_categories,
model_solution.add_input_dual)
self._process_duals(dmu_code, self.input_data.output_categories,
model_solution.add_output_dual)
示例11: solve
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def solve(g):
el = g.get_edge_list()
nl = g.get_node_list()
p = LpProblem('min_cost', LpMinimize)
capacity = {}
cost = {}
demand = {}
x = {}
for e in el:
capacity[e] = g.get_edge_attr(e[0], e[1], 'capacity')
cost[e] = g.get_edge_attr(e[0], e[1], 'cost')
for i in nl:
demand[i] = g.get_node_attr(i, 'demand')
for e in el:
x[e] = LpVariable("x"+str(e), 0, capacity[e])
# add obj
objective = lpSum (cost[e]*x[e] for e in el)
p += objective
# add constraints
for i in nl:
out_neig = g.get_out_neighbors(i)
in_neig = g.get_in_neighbors(i)
p += lpSum(x[(i,j)] for j in out_neig) -\
lpSum(x[(j,i)] for j in in_neig)==demand[i]
p.solve()
return x, value(objective)
示例12: get_allocations
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def get_allocations(x, product_names, out_shape):
"""Return allocations after solving of LP and reshape them."""
allocations = [x[it].value() for it in product_names]
return np.array(allocations).reshape(out_shape)
示例13: solve_lp
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def solve_lp(prob):
"""Solve LP, return min/max."""
optimization_result = prob.solve()
assert optimization_result == pulp.LpStatusOptimal
optimal_value = pulp.value(prob.objective)
return optimal_value
示例14: mass
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def mass(self, value):
self.data['mass'] = value
示例15: composition_violation
# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import value [as 别名]
def composition_violation(self, substances, composition_keys=None):
""" Net amount of constituent produced
If composition keys correspond to conserved entities e.g. atoms
in chemical reactions, this function should return a list of zeros.
Parameters
----------
substances : dict
composition_keys : iterable of str, ``None`` or ``True``
When ``None`` or True: composition keys are taken from substances.
When ``True`` the keys are also return as an extra return value
Returns
-------
- If ``composition_keys == True``: a tuple: (violations, composition_keys)
- Otherwise: violations (list of coefficients)
"""
keys, values = zip(*substances.items())
ret_comp_keys = composition_keys is True
if composition_keys in (None, True):
composition_keys = Substance.composition_keys(values)
net = [0]*len(composition_keys)
for substance, coeff in zip(values, self.net_stoich(keys)):
for idx, key in enumerate(composition_keys):
net[idx] += substance.composition.get(key, 0) * coeff
if ret_comp_keys:
return net, composition_keys
else:
return net