当前位置: 首页>>代码示例>>Python>>正文


Python pulp.lpSum方法代码示例

本文整理汇总了Python中pulp.lpSum方法的典型用法代码示例。如果您正苦于以下问题:Python pulp.lpSum方法的具体用法?Python pulp.lpSum怎么用?Python pulp.lpSum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pulp的用法示例。


在下文中一共展示了pulp.lpSum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_objective_function

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def get_objective_function(self, input_data, dmu_code, input_variables,
                               output_variables):
        ''' Generates objective function of input-oriented multiplier model.

            Args:
                input_data (InputData): object that stores input data.
                dmu_code (str): DMU code.
                input_variables (dict of str to pulp.LpVariable): dictionary
                    that maps variable name to pulp variable corresponding
                    to input categories.
                output_variables (dict of str to pulp.LpVariable): dictionary
                    that maps variable name to pulp variable corresponding
                    to output categories.

            Returns:
                pulp.LpSum: objective function.
        '''
        return pulp.lpSum([input_data.coefficients[dmu_code, category] *
                          output_variables[category]
                          for category in input_data.output_categories]) 
开发者ID:araith,项目名称:pyDEA,代码行数:22,代码来源:multiplier_model.py

示例2: get_equality_constraint

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def get_equality_constraint(self, input_data, dmu_code, input_variables,
                                output_variables):
        ''' Generates equality constraint of input-oriented multiplier model.

            Args:
                input_data (InputData): object that stores input data.
                dmu_code (str): DMU code.
                input_variables (dict of str to pulp.LpVariable): dictionary
                    that maps variable name to pulp variable corresponding
                    to input categories.
                output_variables (dict of str to pulp.LpVariable): dictionary
                    that maps variable name to pulp variable corresponding
                    to output categories.

            Returns:
                pulp.LpConstraint: equality constraint.
        '''
        return pulp.lpSum([input_data.coefficients[dmu_code, category] *
                          input_variables[category]
                          for category in input_data.input_categories]) == 1 
开发者ID:araith,项目名称:pyDEA,代码行数:22,代码来源:multiplier_model.py

示例3: _get_equality_constraint

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def _get_equality_constraint(self, dmu_code):
        ''' Returns equality constraint.

            Args:
                dmu_code (str): DMU code.

            Returns:
                pulp.LpConstraint: equality constraint.
        '''
        coeffs = self._model_to_decorate.input_data.coefficients
        variables = self._get_variables()
        sum_vars = pulp.lpSum([coeffs[dmu_code, category] * value
                              for category, value in variables.items()
                              if category not in self.categories])
        assert(sum_vars)
        return sum_vars == 1 
开发者ID:araith,项目名称:pyDEA,代码行数:18,代码来源:multiplier_model_decorators.py

示例4: define_lp

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def define_lp(fares, product_names):
    """Set up LP.

    Parameters
    ----------
    fares: 2D np array
            contains fares for products, size n_classes*n_products
    products_names: list
            product names (typically relation/class combinations)

    Returns
    -------
    tuple of the form (LP problem, decision variables)
    """
    prob = pulp.LpProblem('network_RM', pulp.LpMaximize)

    # decision variables: available seats per product
    x = pulp.LpVariable.dicts('x', product_names, lowBound=0)

    # objective function
    revenue = pulp.lpSum([x[it]*fares.ravel()[i] for i, it in
                          enumerate(product_names)])
    prob += revenue

    return prob, x 
开发者ID:flix-tech,项目名称:RevPy,代码行数:27,代码来源:lp_solve.py

示例5: label_prop

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def label_prop(C, nt, Dct, lp="linear"):
    
#Inputs:
#  C      :    Number of share classes between src and tar
#  nt     :    Number of target domain samples
#  Dct    :    All d_ct in matrix form, nt * C
#  lp     :    Type of linear programming: linear (default) | binary
#Outputs:
#  Mcj    :    all M_ct in matrix form, m * C
    
    Dct = abs(Dct)
    model = pulp.LpProblem("Cost minimising problem", pulp.LpMinimize)
    Mcj = pulp.LpVariable.dicts("Probability",
                                ((i, j) for i in range(C) for j in range(nt)),
                                lowBound=0,
                                upBound=1,
                                cat='Continuous')
    
    # Objective Function
    model += (
    pulp.lpSum([Dct[j, i]*Mcj[(i, j)] for i in range(C) for j in range(nt)])
    )
    
    # Constraints
    for j in range(nt):
        model += pulp.lpSum([Mcj[(i, j)] for i in range(C)]) == 1
    for i in range(C):
        model += pulp.lpSum([Mcj[(i, j)] for j in range(nt)]) >= 1
    
    # Solve our problem
    model.solve()
    pulp.LpStatus[model.status]
    Output = [[Mcj[i, j].varValue for i in range(C)] for j in range(nt)]
    
    return np.array(Output) 
开发者ID:jindongwang,项目名称:transferlearning,代码行数:37,代码来源:label_prop_v2.py

示例6: set_objective

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def set_objective(self, variables, coefficients):
        self.prob += lpSum([variable * coefficient for variable, coefficient in zip(variables, coefficients)]) 
开发者ID:DimaKudosh,项目名称:pydfs-lineup-optimizer,代码行数:4,代码来源:pulp_solver.py

示例7: add_constraint

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def add_constraint(self, variables, coefficients, sign, rhs):
        if coefficients:
            lhs = [variable * coefficient for variable, coefficient in zip(variables, coefficients)]
        else:
            lhs = variables
        if sign == SolverSign.EQ:
            self.prob += lpSum(lhs) == rhs
        elif sign == SolverSign.NOT_EQ:
            self.prob += lpSum(lhs) != rhs
        elif sign == SolverSign.GTE:
            self.prob += lpSum(lhs) >= rhs
        elif sign == SolverSign.LTE:
            self.prob += lpSum(lhs) <= rhs
        else:
            raise SolverException('Incorrect constraint sign') 
开发者ID:DimaKudosh,项目名称:pydfs-lineup-optimizer,代码行数:17,代码来源:pulp_solver.py

示例8: _set_objective_function

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def _set_objective_function(self):
        # Similar to constraints, saving the costs expressions as attributes
        # can give you the chance to retrieve their values at the end of the optimization
        self.total_holding_cost = self.input_params['holding_cost'] * pulp.lpSum(self.inventory_variables)
        self.total_production_cost = pulp.lpSum(row['production_cost'] * self.production_variables[index]
                                                for index, row in self.input_data.iterrows())

        objective = self.total_holding_cost + self.total_production_cost
        self.model.setObjective(objective)

    # ================== Optimization ================== 
开发者ID:ekhoda,项目名称:optimization-tutorial,代码行数:13,代码来源:optimization_model_pulp.py

示例9: create_model

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def create_model(self):
        def distances(assignment):
            return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])

        clusters = list(range(self.k))
        assignments = [(i, j)for i in range(self.n) for j in range(self.k)]

        # outflow variables for data nodes
        self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
                                  assignments,
                                  lowBound=0,
                                  upBound=1,
                                  cat=pulp.LpInteger)

        # outflow variables for cluster nodes
        self.b = pulp.LpVariable.dicts('cluster outflows',
                                  clusters,
                                  lowBound=0,
                                  upBound=self.n-self.min_size,
                                  cat=pulp.LpContinuous)

        # create the model
        self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)

        # objective function
        self.model += pulp.lpSum(distances(assignment) * self.y[assignment] for assignment in assignments)

        # flow balance constraints for data nodes
        for i in range(self.n):
            self.model += pulp.lpSum(self.y[(i, j)] for j in range(self.k)) == 1

        # flow balance constraints for cluster nodes
        for j in range(self.k):
            self.model += pulp.lpSum(self.y[(i, j)] for i in range(self.n)) - self.min_size == self.b[j]

        # flow balance constraint for the sink node
        self.model += pulp.lpSum(self.b[j] for j in range(self.k)) == self.n - (self.k * self.min_size) 
开发者ID:Behrouz-Babaki,项目名称:MinSizeKmeans,代码行数:39,代码来源:run_mskmeans.py

示例10: create_model

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def create_model(self):
        def distances(assignment):
            return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])

        clusters = list(range(self.k))
        assignments = [(i, j)for i in range(self.n) for j in range(self.k)]

        # outflow variables for data nodes
        self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
                                  assignments,
                                  lowBound=0,
                                  upBound=1,
                                  cat=pulp.LpInteger)

        # outflow variables for cluster nodes
        self.b = pulp.LpVariable.dicts('cluster outflows',
                                  clusters,
                                  lowBound=0,
                                  upBound=self.n-self.min_size,
                                  cat=pulp.LpContinuous)

        # create the model
        self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)

        # objective function
        self.model += pulp.lpSum([distances(assignment) * self.y[assignment] for assignment in assignments])

        # flow balance constraints for data nodes
        for i in range(self.n):
            self.model += pulp.lpSum(self.y[(i, j)] for j in range(self.k)) == 1

        # flow balance constraints for cluster nodes
        for j in range(self.k):
            self.model += pulp.lpSum(self.y[(i, j)] for i in range(self.n)) - self.min_size == self.b[j]
            
        # capacity constraint on outflow of cluster nodes
        for j in range(self.k):
            self.model += self.b[j] <= self.max_size - self.min_size 

        # flow balance constraint for the sink node
        self.model += pulp.lpSum(self.b[j] for j in range(self.k)) == self.n - (self.k * self.min_size) 
开发者ID:Behrouz-Babaki,项目名称:MinSizeKmeans,代码行数:43,代码来源:minmax_kmeans.py

示例11: create_model

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def create_model(self):
        def distances(assignment):
            return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])

        assignments = [(i, j) for i in range(self.n) for j in range(self.k)]

        # assignment variables
        self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
                                  assignments,
                                  lowBound=0,
                                  upBound=1,
                                  cat=pulp.LpInteger)

        # create the model
        self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)

        # objective function
        self.model += pulp.lpSum([distances(assignment) * self.weights[assignment[0]] * self.y[assignment] for assignment in assignments]), 'Objective Function - sum weighted squared distances to assigned centroid'
        # this is also weighted, otherwise the weighted centroid computation don't make sense.

        # constraints on the total weights of clusters
        for j in range(self.k):
            self.model += pulp.lpSum([self.weights[i] * self.y[(i, j)] for i in range(self.n)]) >= self.min_weight, "minimum weight for cluster {}".format(j)
            self.model += pulp.lpSum([self.weights[i] * self.y[(i, j)] for i in range(self.n)]) <= self.max_weight, "maximum weight for cluster {}".format(j)

        # make sure each point is assigned at least once, and only once
        for i in range(self.n):
            self.model += pulp.lpSum([self.y[(i, j)] for j in range(self.k)]) == 1, "must assign point {}".format(i) 
开发者ID:Behrouz-Babaki,项目名称:MinSizeKmeans,代码行数:30,代码来源:weighted_mm_kmeans.py

示例12: _gclp

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def _gclp(self, composition={}, mus={}, phases=[]):
        if not qmpy.FOUND_PULP:
            raise Exception('Cannot do GCLP without installing PuLP and an LP',
                    'solver')
        prob = pulp.LpProblem('GibbsEnergyMin', pulp.LpMinimize)
        phase_vars = pulp.LpVariable.dicts('lib', phases, 0.0)
        prob += pulp.lpSum([ (p.energy -
            sum([ p.unit_comp.get(elt,0)*mu
                for elt, mu in mus.items() ])) * phase_vars[p]
            for p in phases]),\
                    "Free Energy"
        for elt, constraint in composition.items():
            prob += pulp.lpSum([
                p.unit_comp.get(elt,0)*phase_vars[p]
                for p in phases ]) == float(constraint),\
                        'Conservation of '+elt
        ##[vh]
        ##print prob
        if pulp.GUROBI().available():
            prob.solve(pulp.GUROBI(msg=False))
        elif pulp.COIN_CMD().available():
            prob.solve(pulp.COIN_CMD())
        else:
            prob.solve()

        phase_comp = dict([ (p, phase_vars[p].varValue)
            for p in phases if phase_vars[p].varValue > 1e-5])
        
        energy = sum( p.energy*amt for p, amt in phase_comp.items() )
        energy -= sum([ a*composition.get(e, 0) for e,a in mus.items()])
        return energy, phase_comp 
开发者ID:wolverton-research-group,项目名称:qmpy,代码行数:33,代码来源:space.py

示例13: get_minima

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def get_minima(self, phases, bounds):
        """
        Given a set of Phases, get_minima will determine the minimum
        free energy elemental composition as a weighted sum of these
        compounds
        """

        prob = pulp.LpProblem('GibbsEnergyMin', pulp.LpMinimize)
        pvars = pulp.LpVariable.dicts('phase', phases, 0)
        bvars = pulp.LpVariable.dicts('bound', bounds, 0.0, 1.0)
        prob += pulp.lpSum( self.phase_energy(p)*pvars[p] for p in phases ) - \
                pulp.lpSum( self.phase_energy(bound)*bvars[bound] for bound in bounds ), \
                                "Free Energy"
        for elt in self.bound_space:
            prob += sum([ p.unit_comp.get(elt,0)*pvars[p] for p in phases ])\
                        == \
                sum([ b.unit_comp.get(elt, 0)*bvars[b] for b in bounds ]),\
                            'Contraint to the proper range of'+elt
        prob += sum([ bvars[b] for b in bounds ]) == 1, \
                'sum of bounds must be 1'

        if pulp.GUROBI().available():
            prob.solve(pulp.GUROBI(msg=False))
        elif pulp.COIN_CMD().available():
            prob.solve(pulp.COIN_CMD())
        elif pulp.COINMP_DLL().available():
            prob.solve(pulp.COINMP_DLL())
        else:
            prob.solve()

        E = pulp.value(prob.objective)
        xsoln = defaultdict(float,
            [(p, pvars[p].varValue) for p in phases if
                abs(pvars[p].varValue) > 1e-4])
        return xsoln, E 
开发者ID:wolverton-research-group,项目名称:qmpy,代码行数:37,代码来源:space.py

示例14: _create_lp

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def _create_lp(self):
        ''' Creates initial LP.
        '''
        self._model_to_decorate._create_lp()
        self.lp_model = self._model_to_decorate.lp_model
        variables = [self._model_to_decorate._variables[dmu_code] for dmu_code
                     in self.input_data.DMU_codes]

        self._model_to_decorate.lp_model += (pulp.lpSum(variables) == 1,
                                             'VRS_constraint')
        self.lp_model = self._model_to_decorate.lp_model 
开发者ID:araith,项目名称:pyDEA,代码行数:13,代码来源:envelopment_model_decorators.py

示例15: _add_constraints_for_outputs

# 需要导入模块: import pulp [as 别名]
# 或者: from pulp import lpSum [as 别名]
def _add_constraints_for_outputs(self, variables, dmu_code,
                                     obj_variable):
        ''' Adds constraints for outputs to linear program.

            Args:
                variables (dict of str to pulp.LpVariable): a dictionary
                    that maps DMU codes to pulp.LpVariable, created with
                    pulp.LpVariable.dicts.
                dmu_code (str): DMU code for which LP is being created.
                obj_variable (pulp.LpVariable): LP variable that is optimised
                    (either efficiency score or inverse of efficiency score).
        '''
        for (count, output_category) in enumerate(
                self.input_data.output_categories):
            current_output = self.input_data.coefficients[(dmu_code,
                                                          output_category)]
            output_coeff = self._concrete_model.get_output_variable_coefficient(
                obj_variable, output_category)
            sum_all_outputs = pulp.lpSum([variables[dmu] *
                                         self.input_data.coefficients
                                         [(dmu, output_category)]
                                         for dmu in self.input_data.DMU_codes])
            name = 'constraint_output_{count}'.format(count=count)
            self.lp_model += (self._constraint_creator.create(
                              -output_coeff * current_output +
                              sum_all_outputs, 0, output_category), name)
            self._constraints[output_category] = name 
开发者ID:araith,项目名称:pyDEA,代码行数:29,代码来源:envelopment_model_base.py


注:本文中的pulp.lpSum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。