本文整理汇总了Python中provider.loadDataFile方法的典型用法代码示例。如果您正苦于以下问题:Python provider.loadDataFile方法的具体用法?Python provider.loadDataFile怎么用?Python provider.loadDataFile使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类provider
的用法示例。
在下文中一共展示了provider.loadDataFile方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: find_models
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def find_models(category, model, templates, case):
# model: No of models to be stored for a particular category.
# category: Name of the category to be stored.
# templates: Array having templates (BxNx3)
# case: Which files to be used? (test/train)
if case == 'test':
FILES = TEST_FILES
if case == 'train':
FILES = TRAIN_FILES
print(FILES)
count = 0 # Counter to find number of models.
for train_idx in range(len(FILES)): # Loop over all the training files from ModelNet40 data.
current_data, current_label = provider.loadDataFile(FILES[train_idx]) # Load data of from a file.
for i in range(current_data.shape[0]):
if count<model and shapes.index(category)==current_label[i]:
# import transforms3d.euler as t3d
# rot = t3d.euler2mat(0*np.pi/1 80, 0*np.pi/180, 90*np.pi/180, 'szyx')
# templates.append((np.dot(rot, current_data[i].T).T))
templates.append(current_data[i]/2.0) # Append data if it belongs to the category and less than given number of models.
count += 1
return templates
示例2: load_data
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def load_data(all_files, room_filelist, test_area_idx):
# Load all data
data_batch_list = []
label_batch_list = []
for h5_filename in all_files:
data_batch, label_batch = provider.loadDataFile(h5_filename)
data_batch_list.append(data_batch)
label_batch_list.append(label_batch)
data_batches = np.concatenate(data_batch_list, 0)
label_batches = np.concatenate(label_batch_list, 0)
test_area = 'Area_'+test_area_idx
train_idxs = []
test_idxs = []
for i,room_name in enumerate(room_filelist):
if test_area in room_name:
test_idxs.append(i)
else:
train_idxs.append(i)
return data_batches[train_idxs,...], label_batches[train_idxs], data_batches[test_idxs,...], label_batches[test_idxs]
示例3: loadDataFile
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def loadDataFile(self, filename):
return load_h5(filename)
示例4: __init__
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def __init__(self, h5_filepath, num_point=1024, augment=False):
print('loading ', h5_filepath)
data, label = provider.loadDataFile(h5_filepath)
assert len(data) == len(label)
# data: (2048, 2048, 3) - (batchsize, point, xyz)
# Reduce num point here.
self.data = data[:, :num_point, :].astype(np.float32)
# (2048,) - (batchsize,)
self.label = np.squeeze(label).astype(np.int32)
self.augment = augment
self.num_point = num_point
self.length = len(data)
print('length ', self.length)
示例5: eval_one_epoch
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TEST_FILES[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val*BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
示例6: loadDataFile
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def loadDataFile(self, filename):
return self.load_h5(filename)
示例7: train_classifier_one_epoch
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def train_classifier_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
for fn in range(len(TRAIN_FILES_CLS)):
# Shuffle train files
current_data, current_label = provider.loadDataFile(TRAIN_FILES_CLS[fn])
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
# I find that we can increase the accuracy by about 0.2% after
# padding zero vectors, but I do not know the reason.
current_data = np.concatenate([current_data, np.zeros((
current_data.shape[0], NUM_FEATURE_CLS - current_data.shape[1]))], axis = -1)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the features and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx,...],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training,}
# Calculate the loss and classification scores.
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
示例8: train_one_epoch
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train files
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
for fn in range(len(TRAIN_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]])
current_data = current_data[:,0:NUM_POINT,:]
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Augment batched point clouds by rotation and jittering
rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :])
jittered_data = provider.jitter_point_cloud(rotated_data)
feed_dict = {ops['pointclouds_pl']: jittered_data,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training,}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
示例9: train_one_epoch
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train files
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
for fn in range(len(TRAIN_FILES)):
log_string('----' + str(fn) + '-----')
# Load data and labels from the files.
current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]])
current_data = current_data[:,0:NUM_POINT,:]
# Shuffle the data in the training set.
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Augment batched point clouds by rotating, jittering, shifting,
# and scaling.
rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :])
jittered_data = provider.jitter_point_cloud(rotated_data)
jittered_data = provider.random_scale_point_cloud(jittered_data)
jittered_data = provider.rotate_perturbation_point_cloud(jittered_data)
jittered_data = provider.shift_point_cloud(jittered_data)
# Input the augmented point cloud and labels to the graph.
feed_dict = {ops['pointclouds_pl']: jittered_data,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training,}
# Calculate the loss and accuracy of the input batch data.
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
示例10: eval_one_epoch
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TEST_FILES[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the point cloud and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
# Calculate the loss and classification scores.
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val*BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
return total_correct / float(total_seen)
示例11: save_global_feature
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def save_global_feature(sess, ops, saver, layers):
feature_name = 'global_feature'
file_name_vec = ['train_' + feature_name, 'test_' + feature_name]
Files_vec = [TRAIN_FILES, TEST_FILES]
#Restore variables that achieves the best validation accuracy from the disk.
saver.restore(sess, os.path.join(LOG_DIR, FLAGS.model+
str(NAME_MODEL)+ "_model.ckpt"))
log_string("Model restored.")
is_training = False
# Extract the features from training set and validation set.
for r in range(2):
file_name = file_name_vec[r]
Files = Files_vec[r]
global_feature_vec = np.array([])
label_vec = np.array([])
for fn in range(len(Files)):
log_string('----'+str(fn)+'----')
current_data, current_label = provider.loadDataFile(Files[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
print(current_data.shape)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
print(file_size)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the point cloud and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
# Extract the global features from the input batch data.
global_feature = np.squeeze(layers[feature_name].eval(
feed_dict=feed_dict,session=sess))
if label_vec.shape[0] == 0:
global_feature_vec = global_feature
label_vec = current_label[start_idx:end_idx]
else:
global_feature_vec = np.concatenate([global_feature_vec, global_feature])
label_vec = np.concatenate([label_vec, current_label[start_idx:end_idx]])
# Save all global features to the disk.
FileIO.write_h5('data/extracted_feature/' + file_name + '.h5', global_feature_vec, label_vec)
示例12: eval_classifier_one_epoch
# 需要导入模块: import provider [as 别名]
# 或者: from provider import loadDataFile [as 别名]
def eval_classifier_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
file_size_sum = 0
for fn in range(len(TEST_FILES_CLS)):
current_data, current_label = provider.loadDataFile(TEST_FILES_CLS[fn])
current_label = np.squeeze(current_label)
# I find that we can increase the accuracy by about 0.2% after
# padding zero vectors, but I do not know the reason.
current_data = np.concatenate([current_data, np.zeros((
current_data.shape[0], NUM_FEATURE_CLS - current_data.shape[1]))], axis = -1)
file_size = current_data.shape[0]
file_size_sum += file_size
num_batches = file_size // BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Input the features and labels to the graph.
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx,:],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
# Calculate the loss and classification scores.
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val*BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
accuracy = total_correct / float(total_seen)
class_accuracy = np.mean(np.array(total_correct_class)/np.array(
total_seen_class,dtype=np.float))
return accuracy, class_accuracy