本文整理汇总了Python中preprocessing.inception_preprocessing方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessing.inception_preprocessing方法的具体用法?Python preprocessing.inception_preprocessing怎么用?Python preprocessing.inception_preprocessing使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类preprocessing
的用法示例。
在下文中一共展示了preprocessing.inception_preprocessing方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'inception_v1': inception_preprocessing,
'mobilenet_v1': inception_preprocessing,
'reid': reid_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例2: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例3: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例4: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'nasnet_mobile': inception_preprocessing,
'nasnet_large': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例5: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'mobilenet_v2': inception_preprocessing,
'mobilenet_v2_035': inception_preprocessing,
'mobilenet_v2_140': inception_preprocessing,
'nasnet_mobile': inception_preprocessing,
'nasnet_large': inception_preprocessing,
'pnasnet_mobile': inception_preprocessing,
'pnasnet_large': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例6: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例7: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'nasnet_mobile': inception_preprocessing,
'nasnet_large': inception_preprocessing,
'pnasnet_large': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例8: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
'mobilenet': mobilenet_preprocessing,
'mobilenetdet': mobilenetdet_preprocessing
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例9: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'inception_resnet_v2_rnn': inception_preprocessing,
'lenet': lenet_preprocessing,
'googlenet': googlenet_preprocessing,
'googlenet_rnn': googlenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例10: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'nasnet_mobile': inception_preprocessing,
'nasnet_large': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
'danbooru': danbooru_preprocessing
}
if name is None or name == 'fully_connected':
tf.logging.info('No preprocessing.')
return None
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例11: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
示例12: get_preprocessing
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import inception_preprocessing [as 别名]
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
'off': off_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn