本文整理汇总了Python中preprocessing.decode_image方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessing.decode_image方法的具体用法?Python preprocessing.decode_image怎么用?Python preprocessing.decode_image使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类preprocessing
的用法示例。
在下文中一共展示了preprocessing.decode_image方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: parse_sequence_to_svtcn_batch
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import decode_image [as 别名]
def parse_sequence_to_svtcn_batch(
serialized_example, preprocess_fn, is_training, num_views, batch_size):
"""Parses a serialized sequence example into a batch of SVTCN data."""
_, views, seq_len = parse_sequence_example(serialized_example, num_views)
# Get svtcn indices.
time_indices, view_indices = get_svtcn_indices(seq_len, batch_size, num_views)
combined_indices = tf.concat(
[tf.expand_dims(view_indices, 1),
tf.expand_dims(time_indices, 1)], 1)
# Gather the image strings.
images = tf.gather_nd(views, combined_indices)
# Decode images.
images = tf.map_fn(preprocessing.decode_image, images, dtype=tf.float32)
# Concatenate anchor and postitive images, preprocess the batch.
preprocessed = preprocess_fn(images, is_training)
return preprocessed, images, time_indices
示例2: parse_labeled_example
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import decode_image [as 别名]
def parse_labeled_example(
example_proto, view_index, preprocess_fn, image_attr_keys, label_attr_keys):
"""Parses a labeled test example from a specified view.
Args:
example_proto: A scalar string Tensor.
view_index: Int, index on which view to parse.
preprocess_fn: A function with the signature (raw_images, is_training) ->
preprocessed_images, where raw_images is a 4-D float32 image `Tensor`
of raw images, is_training is a Boolean describing if we're in training,
and preprocessed_images is a 4-D float32 image `Tensor` holding
preprocessed images.
image_attr_keys: List of Strings, names for image keys.
label_attr_keys: List of Strings, names for label attributes.
Returns:
data: A tuple of images, attributes and tasks `Tensors`.
"""
features = {}
for attr_key in image_attr_keys:
features[attr_key] = tf.FixedLenFeature((), tf.string)
for attr_key in label_attr_keys:
features[attr_key] = tf.FixedLenFeature((), tf.int64)
parsed_features = tf.parse_single_example(example_proto, features)
image_only_keys = [i for i in image_attr_keys if 'image' in i]
view_image_key = image_only_keys[view_index]
image = preprocessing.decode_image(parsed_features[view_image_key])
preprocessed = preprocess_fn(image, is_training=False)
attributes = [parsed_features[k] for k in label_attr_keys]
task = parsed_features['task']
return tuple([preprocessed] + attributes + [task])
示例3: parse_sequence_to_pairs_batch
# 需要导入模块: import preprocessing [as 别名]
# 或者: from preprocessing import decode_image [as 别名]
def parse_sequence_to_pairs_batch(
serialized_example, preprocess_fn, is_training, num_views, batch_size,
window):
"""Parses a serialized sequence example into a batch of preprocessed data.
Args:
serialized_example: A serialized SequenceExample.
preprocess_fn: A function with the signature (raw_images, is_training) ->
preprocessed_images.
is_training: Boolean, whether or not we're in training.
num_views: Int, the number of simultaneous viewpoints at each timestep in
the dataset.
batch_size: Int, size of the batch to get.
window: Int, only take pairs from a maximium window of this size.
Returns:
preprocessed: A 4-D float32 `Tensor` holding preprocessed images.
anchor_images: A 4-D float32 `Tensor` holding raw anchor images.
pos_images: A 4-D float32 `Tensor` holding raw positive images.
"""
_, views, seq_len = parse_sequence_example(serialized_example, num_views)
# Get random (anchor, positive) timestep and viewpoint indices.
num_pairs = batch_size // 2
ap_time_indices, a_view_indices, p_view_indices = get_tcn_anchor_pos_indices(
seq_len, num_views, num_pairs, window)
# Gather the image strings.
combined_anchor_indices = tf.concat(
[tf.expand_dims(a_view_indices, 1),
tf.expand_dims(ap_time_indices, 1)], 1)
combined_pos_indices = tf.concat(
[tf.expand_dims(p_view_indices, 1),
tf.expand_dims(ap_time_indices, 1)], 1)
anchor_images = tf.gather_nd(views, combined_anchor_indices)
pos_images = tf.gather_nd(views, combined_pos_indices)
# Decode images.
anchor_images = tf.map_fn(
preprocessing.decode_image, anchor_images, dtype=tf.float32)
pos_images = tf.map_fn(
preprocessing.decode_image, pos_images, dtype=tf.float32)
# Concatenate [anchor, postitive] images into a batch and preprocess it.
concatenated = tf.concat([anchor_images, pos_images], 0)
preprocessed = preprocess_fn(concatenated, is_training)
anchor_prepro, positive_prepro = tf.split(preprocessed, num_or_size_splits=2,
axis=0)
# Set static batch dimensions for all image tensors
ims = [anchor_prepro, positive_prepro, anchor_images, pos_images]
ims = [set_image_tensor_batch_dim(i, num_pairs) for i in ims]
[anchor_prepro, positive_prepro, anchor_images, pos_images] = ims
# Assign each anchor and positive the same label.
anchor_labels = tf.range(1, num_pairs+1)
positive_labels = tf.range(1, num_pairs+1)
return (anchor_prepro, positive_prepro, anchor_images, pos_images,
anchor_labels, positive_labels, seq_len)