本文整理汇总了Python中preprocess.preprocess方法的典型用法代码示例。如果您正苦于以下问题:Python preprocess.preprocess方法的具体用法?Python preprocess.preprocess怎么用?Python preprocess.preprocess使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类preprocess
的用法示例。
在下文中一共展示了preprocess.preprocess方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import preprocess [as 别名]
def main():
parser = argparse.ArgumentParser(description='Deep BiLSTM with Residual')
add_arguments(parser)
args = parser.parse_args()
print(args)
hparams = tf.contrib.training.HParams(**vars(args))
# check GPU device
utils.print_out("# Devices visible to TensorFlow: %s" % repr(tf.Session().list_devices()))
# create dirs
expr_dir, config_dir, log_dir, data_dir, model_dir, figure_dir, result_dir = create_dirs(hparams)
# save hyperameter
check_and_save_hparams(config_dir, hparams)
stage = 'test' # preprocess','train_eval', or 'test'
assert stage in [, 'train_eval', 'test'], 'stage not recognized'
utils.print_out('stage: %s' % stage)
# if stage == 'preprocess':
# preprocess.preprocess(hparams, data_dir)
# the data are stored in the data_dir for the training step
if stage == 'train_eval':
process.train_eval(hparams, data_dir, model_dir, log_dir)
if stage == 'test':
process.infer(hparams, data_dir, model_dir, result_dir)
示例2: data_generator
# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import preprocess [as 别名]
def data_generator(data, labels, max_len=200000, batch_size=64, shuffle=True):
idx = np.arange(len(data))
if shuffle:
np.random.shuffle(idx)
batches = [idx[range(batch_size*i, min(len(data), batch_size*(i+1)))] for i in range(len(data)//batch_size+1)]
while True:
for i in batches:
xx = preprocess(data[i], max_len)[0]
yy = labels[i]
yield (xx, yy)
示例3: load_imgs
# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import preprocess [as 别名]
def load_imgs():
global imgs
global wheels
for p in purposes:
for epoch_id in epochs[p]:
print ('processing and loading "{}" epoch {} into memory, current num of imgs is {}...'.format(p, epoch_id, len(imgs[p])))
# vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
vid_path = cm.jn(data_dir, 'out-video-{}.avi'.format(epoch_id))
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
cap = cv2.VideoCapture(vid_path)
# csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
csv_path = cm.jn(data_dir, 'out-key-{}.csv'.format(epoch_id))
assert os.path.isfile(csv_path)
rows = cm.fetch_csv_data(csv_path)
print ("{}, {}".format(len(rows), frame_count))
assert frame_count == len(rows)
yy = [[float(row['wheel'])] for row in rows]
while True:
ret, img = cap.read()
if not ret:
break
img = preprocess.preprocess(img)
imgs[p].append(img)
wheels[p].extend(yy)
assert len(imgs[p]) == len(wheels[p])
cap.release()
示例4: gen_adv_samples
# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import preprocess [as 别名]
def gen_adv_samples(model, fn_list, pad_percent=0.1, step_size=0.001, thres=0.5):
### search for nearest neighbor in embedding space ###
def emb_search(org, adv, pad_idx, pad_len, neigh):
out = org.copy()
for idx in range(pad_idx, pad_idx+pad_len):
target = adv[idx].reshape(1, -1)
best_idx = neigh.kneighbors(target, 1, False)[0][0]
out[0][idx] = best_idx
return out
max_len = int(model.input.shape[1])
emb_layer = model.layers[1]
emb_weight = emb_layer.get_weights()[0]
inp2emb = K.function([model.input]+ [K.learning_phase()], [emb_layer.output]) # [function] Map sequence to embedding
# Build neighbor searches
neigh = NearestNeighbors(1)
neigh.fit(emb_weight)
log = utils.logger()
adv_samples = []
for e, fn in enumerate(fn_list):
### run one file at a time due to different padding length, [slow]
inp, len_list = preprocess([fn], max_len)
inp_emb = np.squeeze(np.array(inp2emb([inp, False])), 0)
pad_idx = len_list[0]
pad_len = max(min(int(len_list[0]*pad_percent), max_len-pad_idx), 0)
org_score = model.predict(inp)[0][0] ### origianl score, 0 -> malicious, 1 -> benign
loss, pred = float('nan'), float('nan')
if pad_len > 0:
if org_score < thres:
adv_emb, gradient, loss = fgsm(model, inp_emb, pad_idx, pad_len, e, step_size)
adv = emb_search(inp, adv_emb[0], pad_idx, pad_len, neigh)
pred = model.predict(adv)[0][0]
final_adv = adv[0][:pad_idx+pad_len]
else: # use origin file
final_adv = inp[0][:pad_idx]
log.write(fn, org_score, pad_idx, pad_len, loss, pred)
# sequence to bytes
bin_adv = bytes(list(final_adv))
adv_samples.append(bin_adv)
return adv_samples, log
示例5: process_epoch
# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import preprocess [as 别名]
def process_epoch(epoch_id):
print '---------- processing video for epoch {} ----------'.format(epoch_id)
vid_path = cm.jn(params.data_dir, 'out-video-{}.avi'.format(epoch_id))
frame_count = cm.frame_count(vid_path)
vid_scaled_path = cm.jn(params.data_dir, 'out-video-{}-scaled.avi'.format(epoch_id))
if not os.path.exists(vid_scaled_path):
assert os.path.isfile(vid_path)
os.system("ffmpeg -i " + vid_path + " -vf scale=1280:720 " + vid_scaled_path)
print("ffmpeg -i " + vid_path + " -vf scale=1280:720 " + vid_scaled_path)
vid_path = vid_scaled_path
cap = cv2.VideoCapture(vid_path)
machine_steering = []
print 'performing inference...'
time_start = time.time()
for frame_id in xrange(frame_count):
ret, img = cap.read()
assert ret
prep_start = time.time()
img = preprocess.preprocess(img)
pred_start = time.time()
rad = model.y.eval(feed_dict={model.x: [img], model.keep_prob: 1.0})[0][0]
deg = rad2deg(rad)
pred_end = time.time()
prep_time = pred_start - prep_start
pred_time = pred_end - pred_start
# print 'pred: {} deg. took {} ms'.format(deg, pred_time * 1000)
# print 'pred: {} deg (rad={})'.format(deg, rad)
machine_steering.append(deg)
cap.release()
fps = frame_count / (time.time() - time_start)
print ('completed inference, total frames: {}, average fps: {} Hz'.format(frame_count, round(fps, 1)))
# print "Machine Steering:", machine_steering
return machine_steering
示例6: load_imgs_v2
# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import preprocess [as 别名]
def load_imgs_v2():
global imgs
global wheels
for epoch_id in epochs['all']:
print ('processing and loading epoch {} into memorys. train:{}, val:{}'.format(
epoch_id, len(imgs['train']), len(imgs['val'])))
# vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
vid_path = cm.jn(data_dir, 'out-video-{}.avi'.format(epoch_id))
if not os.path.isfile(vid_path):
continue
frame_count = cm.frame_count(vid_path)
cap = cv2.VideoCapture(vid_path)
# csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
csv_path = cm.jn(data_dir, 'out-key-{}.csv'.format(epoch_id))
assert os.path.isfile(csv_path)
rows = cm.fetch_csv_data(csv_path)
print ("{}, {}".format(len(rows), frame_count))
assert frame_count == len(rows)
for row in rows:
ret, img = cap.read()
if not ret:
break
img = preprocess.preprocess(img)
angle = float(row['wheel'])
if random.random() < params.train_pct:
imgs['train'].append(img)
wheels['train'].append([angle])
else:
imgs['val'].append(img)
wheels['val'].append([angle])
cap.release()
print ('Total data: train:{}, val:{}'.format(len(imgs['train']), len(imgs['val'])))
# load all preprocessed training images into memory
示例7: load_batch
# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import preprocess [as 别名]
def load_batch(purpose):
global current_batch_id
xx = []
yy = []
# fetch the batch definition
batch_id = current_batch_id[purpose]
assert batch_id < len(batches[purpose])
batch = batches[purpose][batch_id]
epoch_id, frame_start, frame_end = batch['epoch_id'], batch['frame_start'], batch['frame_end']
assert epoch_id is not None and frame_start is not None and frame_end is not None
# update the current batch
current_batch_id[purpose] = (current_batch_id[purpose] + 1) % len(batches[purpose])
# fetch image and steering data
vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
cap = cv2.VideoCapture(vid_path)
cm.cv2_goto_frame(cap, frame_start)
csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
assert os.path.isfile(csv_path)
rows = cm.fetch_csv_data(csv_path)
assert frame_count == len(rows)
yy = [[float(row['wheel'])] for row in rows[frame_start:frame_end+1]]
for frame_id in xrange(frame_start, frame_end+1):
ret, img = cap.read()
assert ret
img = preprocess.preprocess(img)
#cv2.imwrite(os.path.abspath('output/sample_frame.jpg'), img)
xx.append(img)
assert len(xx) == len(yy)
cap.release()
return xx, yy