当前位置: 首页>>代码示例>>Python>>正文


Python preprocess.build_save_dataset方法代码示例

本文整理汇总了Python中preprocess.build_save_dataset方法的典型用法代码示例。如果您正苦于以下问题:Python preprocess.build_save_dataset方法的具体用法?Python preprocess.build_save_dataset怎么用?Python preprocess.build_save_dataset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在preprocess的用法示例。


在下文中一共展示了preprocess.build_save_dataset方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dataset_build

# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import build_save_dataset [as 别名]
def dataset_build(self, opt):
        fields = onmt.inputters.get_fields("text", 0, 0)

        if hasattr(opt, 'src_vocab') and len(opt.src_vocab) > 0:
            with codecs.open(opt.src_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')
        if hasattr(opt, 'tgt_vocab') and len(opt.tgt_vocab) > 0:
            with codecs.open(opt.tgt_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')

        train_data_files = preprocess.build_save_dataset('train', fields, opt)

        preprocess.build_save_vocab(train_data_files, fields, opt)

        preprocess.build_save_dataset('valid', fields, opt)

        # Remove the generated *pt files.
        for pt in glob.glob(SAVE_DATA_PREFIX + '*.pt'):
            os.remove(pt)
        if hasattr(opt, 'src_vocab') and os.path.exists(opt.src_vocab):
            os.remove(opt.src_vocab)
        if hasattr(opt, 'tgt_vocab') and os.path.exists(opt.tgt_vocab):
            os.remove(opt.tgt_vocab) 
开发者ID:lizekang,项目名称:ITDD,代码行数:25,代码来源:test_preprocess.py

示例2: dataset_build

# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import build_save_dataset [as 别名]
def dataset_build(self, opt):
        fields = onmt.io.get_fields("text", 0, 0)

        if hasattr(opt, 'src_vocab') and len(opt.src_vocab) > 0:
            with codecs.open(opt.src_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')
        if hasattr(opt, 'tgt_vocab') and len(opt.tgt_vocab) > 0:
            with codecs.open(opt.tgt_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')

        train_data_files = preprocess.build_save_dataset('train', fields, opt)

        preprocess.build_save_vocab(train_data_files, fields, opt)

        preprocess.build_save_dataset('valid', fields, opt)

        # Remove the generated *pt files.
        for pt in glob.glob(SAVE_DATA_PREFIX + '*.pt'):
            os.remove(pt)
        if hasattr(opt, 'src_vocab') and os.path.exists(opt.src_vocab):
            os.remove(opt.src_vocab)
        if hasattr(opt, 'tgt_vocab') and os.path.exists(opt.tgt_vocab):
            os.remove(opt.tgt_vocab) 
开发者ID:ratishsp,项目名称:data2text-entity-py,代码行数:25,代码来源:test_preprocess.py

示例3: dataset_build

# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import build_save_dataset [as 别名]
def dataset_build(self, opt):
        fields = onmt.inputters.get_fields("text", 0, 0)

        if hasattr(opt, 'src_vocab') and len(opt.src_vocab) > 0:
            with codecs.open(opt.src_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')
        if hasattr(opt, 'tgt_vocab') and len(opt.tgt_vocab) > 0:
            with codecs.open(opt.tgt_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')

        src_reader = onmt.inputters.str2reader[opt.data_type].from_opt(opt)
        tgt_reader = onmt.inputters.str2reader["text"].from_opt(opt)
        preprocess.build_save_dataset(
            'train', fields, src_reader, tgt_reader, opt)

        preprocess.build_save_dataset(
            'valid', fields, src_reader, tgt_reader, opt)

        # Remove the generated *pt files.
        for pt in glob.glob(SAVE_DATA_PREFIX + '*.pt'):
            os.remove(pt)
        if hasattr(opt, 'src_vocab') and os.path.exists(opt.src_vocab):
            os.remove(opt.src_vocab)
        if hasattr(opt, 'tgt_vocab') and os.path.exists(opt.tgt_vocab):
            os.remove(opt.tgt_vocab) 
开发者ID:memray,项目名称:OpenNMT-kpg-release,代码行数:27,代码来源:test_preprocess.py

示例4: dataset_build

# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import build_save_dataset [as 别名]
def dataset_build(self, opt):
        fields = onmt.io.get_fields("text", 0, 0)

        train_data_files = preprocess.build_save_dataset('train', fields, opt)

        preprocess.build_save_vocab(train_data_files, fields, opt)

        preprocess.build_save_dataset('valid', fields, opt)

        # Remove the generated *pt files.
        for pt in glob.glob(SAVE_DATA_PREFIX + '*.pt'):
            os.remove(pt) 
开发者ID:abaheti95,项目名称:DC-NeuralConversation,代码行数:14,代码来源:test_preprocess.py

示例5: dataset_build

# 需要导入模块: import preprocess [as 别名]
# 或者: from preprocess import build_save_dataset [as 别名]
def dataset_build(self, opt):
        fields = onmt.inputters.get_fields("text", 0, 0)

        if hasattr(opt, 'src_vocab') and len(opt.src_vocab) > 0:
            with codecs.open(opt.src_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')
        if hasattr(opt, 'tgt_vocab') and len(opt.tgt_vocab) > 0:
            with codecs.open(opt.tgt_vocab, 'w', 'utf-8') as f:
                f.write('a\nb\nc\nd\ne\nf\n')

        src_reader = onmt.inputters.str2reader[opt.data_type].from_opt(opt)
        tgt_reader = onmt.inputters.str2reader["text"].from_opt(opt)
        train_data_files = preprocess.build_save_dataset(
            'train', fields, src_reader, tgt_reader, opt)

        preprocess.build_save_vocab(train_data_files, fields, opt)

        preprocess.build_save_dataset(
            'valid', fields, src_reader, tgt_reader, opt)

        # Remove the generated *pt files.
        for pt in glob.glob(SAVE_DATA_PREFIX + '*.pt'):
            os.remove(pt)
        if hasattr(opt, 'src_vocab') and os.path.exists(opt.src_vocab):
            os.remove(opt.src_vocab)
        if hasattr(opt, 'tgt_vocab') and os.path.exists(opt.tgt_vocab):
            os.remove(opt.tgt_vocab) 
开发者ID:harvardnlp,项目名称:encoder-agnostic-adaptation,代码行数:29,代码来源:test_preprocess.py


注:本文中的preprocess.build_save_dataset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。