当前位置: 首页>>代码示例>>Python>>正文


Python pointnet_util.pointnet_sa_module_msg方法代码示例

本文整理汇总了Python中pointnet_util.pointnet_sa_module_msg方法的典型用法代码示例。如果您正苦于以下问题:Python pointnet_util.pointnet_sa_module_msg方法的具体用法?Python pointnet_util.pointnet_sa_module_msg怎么用?Python pointnet_util.pointnet_sa_module_msg使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pointnet_util的用法示例。


在下文中一共展示了pointnet_util.pointnet_sa_module_msg方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module_msg [as 别名]
def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}

    l0_xyz = point_cloud
    l0_points = None

    # Set abstraction layers
    l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points, 512, [0.1,0.2,0.4], [16,32,128], [[32,32,64], [64,64,128], [64,96,128]], is_training, bn_decay, scope='layer1', use_nchw=True)
    l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points, 128, [0.2,0.4,0.8], [32,64,128], [[64,64,128], [128,128,256], [128,128,256]], is_training, bn_decay, scope='layer2')
    l3_xyz, l3_points, _ = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.4, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.4, is_training=is_training, scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:25,代码来源:pointnet2_cls_msg.py

示例2: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module_msg [as 别名]
def get_model(point_cloud, cls_label, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,3])

    # Set abstraction layers
    l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points, 512, [0.1,0.2,0.4], [32,64,128], [[32,32,64], [64,64,128], [64,96,128]], is_training, bn_decay, scope='layer1')
    l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points, 128, [0.4,0.8], [64,128], [[128,128,256],[128,196,256]], is_training, bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Feature propagation layers
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')

    cls_label_one_hot = tf.one_hot(cls_label, depth=NUM_CATEGORIES, on_value=1.0, off_value=0.0)
    cls_label_one_hot = tf.reshape(cls_label_one_hot, [batch_size, 1, NUM_CATEGORIES])
    cls_label_one_hot = tf.tile(cls_label_one_hot, [1,num_point,1])
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([cls_label_one_hot, l0_xyz, l0_points],axis=-1), l1_points, [128,128], is_training, bn_decay, scope='fp_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.conv1d(net, 50, 1, padding='VALID', activation_fn=None, scope='fc2')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:31,代码来源:pointnet2_part_seg_msg_one_hot.py

示例3: corrsfea_extractor

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module_msg [as 别名]
def corrsfea_extractor(xyz, is_training, bn_decay, scopename, reuse, nfea=64):
    ############################
    # input
    #   xyz: (B x N x 3)
    # output
    #   corrsfea: (B x N x nfea)
    ############################
    num_point = xyz.get_shape()[1].value
    l0_xyz = xyz
    l0_points = l0_xyz
    with tf.variable_scope(scopename) as myscope:
        if reuse:
            myscope.reuse_variables()
        # Set Abstraction layers
        l1_xyz, l1_points, l1_indices = pointnet_sa_module_msg(l0_xyz, l0_points, 256, [0.1,0.2], [64,64], [[64,64],[64,64],[64,128]], is_training, bn_decay, scope='corrs_layer1')
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='corrs_layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, use_xyz=False, is_training=is_training, bn_decay=bn_decay, scope='corrs_layer3')
        # Feature Propagation layers
        l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='corrs_fa_layer1')
        l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='corrs_fa_layer2')
        l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,64], is_training, bn_decay, scope='corrs_fa_layer3')
        # FC layers
        net = tf_util.conv1d(l0_points, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='corrs_fc1', bn_decay=bn_decay)
        net = tf_util.conv1d(net, nfea, 1, padding='VALID', activation_fn=None, scope='corrs_fc2')
        corrsfea = tf.reshape(net, [-1, num_point, nfea])
    return corrsfea 
开发者ID:ericyi,项目名称:articulated-part-induction,代码行数:28,代码来源:model.py

示例4: trans_pred_net

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module_msg [as 别名]
def trans_pred_net(xyz, flow, scopename, reuse, is_training, bn_decay=None, nfea=12):
    #########################
    # input
    #   xyz: (B x N x 3)
    #   flow: (B x N x 3)
    # output
    #   pred_trans: (B x N x nfea)
    #########################
    num_point = xyz.get_shape()[1].value
    with tf.variable_scope(scopename) as myscope:
        if reuse:
            myscope.reuse_variables()
        l0_xyz = xyz
        l0_points = flow
        # Set Abstraction layers
        l1_xyz, l1_points, l1_indices = pointnet_sa_module_msg(l0_xyz, l0_points, 256, [0.1,0.2], [64,64], [[64,64],[64,64],[64,128]], is_training, bn_decay, scope='trans_layer1', centralize_points=True)
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='trans_layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, use_xyz=True, is_training=is_training, bn_decay=bn_decay, scope='trans_layer3')
        # Feature Propagation layers
        l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='trans_fa_layer1')
        l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='trans_fa_layer2')
        l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,64], is_training, bn_decay, scope='trans_fa_layer3')
        # FC layers
        net = tf_util.conv1d(l0_points, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='trans_fc1', bn_decay=bn_decay)
        net = tf_util.conv1d(net, nfea, 1, padding='VALID', activation_fn=None, scope='trans_fc2')
        pred_trans = tf.reshape(net, [-1, num_point, nfea])
    return pred_trans 
开发者ID:ericyi,项目名称:articulated-part-induction,代码行数:29,代码来源:model.py

示例5: get_instance_seg_v2_net

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module_msg [as 别名]
def get_instance_seg_v2_net(point_cloud, one_hot_vec,
                            is_training, bn_decay, end_points):
    ''' 3D instance segmentation PointNet v2 network.
    Input:
        point_cloud: TF tensor in shape (B,N,4)
            frustum point clouds with XYZ and intensity in point channels
            XYZs are in frustum coordinate
        one_hot_vec: TF tensor in shape (B,3)
            length-3 vectors indicating predicted object type
        is_training: TF boolean scalar
        bn_decay: TF float scalar
        end_points: dict
    Output:
        logits: TF tensor in shape (B,N,2), scores for bkg/clutter and object
        end_points: dict
    '''

    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,1])

    # Set abstraction layers
    l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points,
        128, [0.2,0.4,0.8], [32,64,128],
        [[32,32,64], [64,64,128], [64,96,128]],
        is_training, bn_decay, scope='layer1')
    l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points,
        32, [0.4,0.8,1.6], [64,64,128],
        [[64,64,128], [128,128,256], [128,128,256]],
        is_training, bn_decay, scope='layer2')
    l3_xyz, l3_points, _ = pointnet_sa_module(l2_xyz, l2_points,
        npoint=None, radius=None, nsample=None, mlp=[128,256,1024],
        mlp2=None, group_all=True, is_training=is_training,
        bn_decay=bn_decay, scope='layer3')

    # Feature Propagation layers
    l3_points = tf.concat([l3_points, tf.expand_dims(one_hot_vec, 1)], axis=2)
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points,
        [128,128], is_training, bn_decay, scope='fa_layer1')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points,
        [128,128], is_training, bn_decay, scope='fa_layer2')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz,
        tf.concat([l0_xyz,l0_points],axis=-1), l1_points,
        [128,128], is_training, bn_decay, scope='fa_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True,
        is_training=is_training, scope='conv1d-fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.7,
        is_training=is_training, scope='dp1')
    logits = tf_util.conv1d(net, 2, 1,
        padding='VALID', activation_fn=None, scope='conv1d-fc2')

    return logits, end_points 
开发者ID:voidrank,项目名称:Geo-CNN,代码行数:56,代码来源:frustum_pointnets_v2.py


注:本文中的pointnet_util.pointnet_sa_module_msg方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。