当前位置: 首页>>代码示例>>Python>>正文


Python pointnet_util.pointnet_sa_module方法代码示例

本文整理汇总了Python中pointnet_util.pointnet_sa_module方法的典型用法代码示例。如果您正苦于以下问题:Python pointnet_util.pointnet_sa_module方法的具体用法?Python pointnet_util.pointnet_sa_module怎么用?Python pointnet_util.pointnet_sa_module使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pointnet_util的用法示例。


在下文中一共展示了pointnet_util.pointnet_sa_module方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pn2_fea_extractor

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def pn2_fea_extractor(xyz, points, scope, is_training, bn_decay=None):
    ''' Encode multiple context.
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
        Return:
            new_points: (batch_size, ndataset, channel_out) TF tensor
    '''
    with tf.variable_scope(scope) as sc:
        batch_size = xyz.get_shape()[0].value
        num_point = xyz.get_shape()[1].value
        l0_xyz = xyz
        l0_points = points

        # Layer 1
        l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=2048, radius=0.2, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=512, radius=0.4, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=128, radius=0.8, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')

        # Feature Propagation layers
        l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,128], is_training, bn_decay, scope='fa_layer1')
        l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [128,64], is_training, bn_decay, scope='fa_layer2')
        new_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [64,64,64], is_training, bn_decay, scope='fa_layer3')

        return new_points 
开发者ID:ericyi,项目名称:GSPN,代码行数:27,代码来源:model_rpointnet.py

示例2: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = None
    end_points['l0_xyz'] = l0_xyz

    # Set abstraction layers
    # Note: When using NCHW for layer 2, we see increased GPU memory usage (in TF1.4).
    # So we only use NCHW for layer 1 until this issue can be resolved.
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1', use_nchw=True)
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:27,代码来源:pointnet2_cls_ssg.py

示例3: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, bn_decay=None):
    """ Part segmentation PointNet, input is BxNx6 (XYZ NormalX NormalY NormalZ), output Bx50 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,3])

    # Set Abstraction layers
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=64, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Feature Propagation layers
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.conv1d(net, 50, 1, padding='VALID', activation_fn=None, scope='fc2')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:27,代码来源:pointnet2_part_seg.py

示例4: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}

    l0_xyz = point_cloud
    l0_points = None

    # Set abstraction layers
    l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points, 512, [0.1,0.2,0.4], [16,32,128], [[32,32,64], [64,64,128], [64,96,128]], is_training, bn_decay, scope='layer1', use_nchw=True)
    l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points, 128, [0.2,0.4,0.8], [32,64,128], [[64,64,128], [128,128,256], [128,128,256]], is_training, bn_decay, scope='layer2')
    l3_xyz, l3_points, _ = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.4, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.4, is_training=is_training, scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:25,代码来源:pointnet2_cls_msg.py

示例5: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, bn_decay=None, num_class=NUM_CLASSES):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = None
    end_points['l0_xyz'] = l0_xyz

    # Set abstraction layers
    # Note: When using NCHW for layer 2, we see increased GPU memory usage (in TF1.4).
    # So we only use NCHW for layer 1 until this issue can be resolved.
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1', use_nchw=True)
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp2')
    net = tf_util.fully_connected(net, num_class, activation_fn=None, scope='fc3')

    return net, end_points 
开发者ID:hkust-vgd,项目名称:scanobjectnn,代码行数:27,代码来源:pointnet2_cls_ssg.py

示例6: build_pointnet2_cls

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def build_pointnet2_cls(scope, point_cloud, out_dims, is_training, bn_decay):
    with tf.variable_scope(scope):
        batch_size = tf.shape(point_cloud)[0]
        l0_xyz = point_cloud
        l0_points = None

        # Set abstraction layers
        # Note: When using NCHW for layer 2, we see increased GPU memory usage (in TF1.4).
        # So we only use NCHW for layer 1 until this issue can be resolved.
        l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1', use_nchw=True)
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

        # Fully connected layers
        net = tf.reshape(l3_points, [batch_size, 1024])
        net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
        net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp2')

        results = []
        for idx, out_dim in enumerate(out_dims):
            current_result = tf_util.fully_connected(net, out_dim, activation_fn=None, scope='fc3_{}'.format(idx))
            results.append(current_result)

        return results 
开发者ID:lingxiaoli94,项目名称:SPFN,代码行数:28,代码来源:architectures.py

示例7: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, num_class, bn_decay=None):
    """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = None
    end_points['l0_xyz'] = l0_xyz

    # Layer 1
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
    l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256,256,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4')

    # Feature Propagation layers
    l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer2')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer3')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer4')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:30,代码来源:pointnet2_sem_seg.py

示例8: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, num_class, bn_decay=None):
    """ Semantic segmentation PointNet, input is BxNx4, output Bxnum_class """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,1])
    end_points['l0_xyz'] = l0_xyz

    # Layer 1
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
    l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256,256,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4')

    # Feature Propagation layers
    l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer2')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer3')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer4')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:30,代码来源:pointnet2_sem_seg_one_feat.py

示例9: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, cls_label, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,3])

    # Set abstraction layers
    l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points, 512, [0.1,0.2,0.4], [32,64,128], [[32,32,64], [64,64,128], [64,96,128]], is_training, bn_decay, scope='layer1')
    l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points, 128, [0.4,0.8], [64,128], [[128,128,256],[128,196,256]], is_training, bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Feature propagation layers
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')

    cls_label_one_hot = tf.one_hot(cls_label, depth=NUM_CATEGORIES, on_value=1.0, off_value=0.0)
    cls_label_one_hot = tf.reshape(cls_label_one_hot, [batch_size, 1, NUM_CATEGORIES])
    cls_label_one_hot = tf.tile(cls_label_one_hot, [1,num_point,1])
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([cls_label_one_hot, l0_xyz, l0_points],axis=-1), l1_points, [128,128], is_training, bn_decay, scope='fp_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.conv1d(net, 50, 1, padding='VALID', activation_fn=None, scope='fc2')

    return net, end_points 
开发者ID:pubgeo,项目名称:dfc2019,代码行数:31,代码来源:pointnet2_part_seg_msg_one_hot.py

示例10: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, bn_decay=None, num_class = NUM_CLASSES):
    """ Part segmentation PointNet, input is BxNx3 (XYZ) """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = None

    # Set Abstraction layers
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=64, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    ###########SEGMENTATION BRANCH
    # Feature Propagation layers
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='seg_fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='seg_dp1')
    seg_pred = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='seg_fc2')

    return seg_pred 
开发者ID:hkust-vgd,项目名称:scanobjectnn,代码行数:28,代码来源:pointnet2_cls_partseg.py

示例11: corrsfea_extractor

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def corrsfea_extractor(xyz, is_training, bn_decay, scopename, reuse, nfea=64):
    ############################
    # input
    #   xyz: (B x N x 3)
    # output
    #   corrsfea: (B x N x nfea)
    ############################
    num_point = xyz.get_shape()[1].value
    l0_xyz = xyz
    l0_points = l0_xyz
    with tf.variable_scope(scopename) as myscope:
        if reuse:
            myscope.reuse_variables()
        # Set Abstraction layers
        l1_xyz, l1_points, l1_indices = pointnet_sa_module_msg(l0_xyz, l0_points, 256, [0.1,0.2], [64,64], [[64,64],[64,64],[64,128]], is_training, bn_decay, scope='corrs_layer1')
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='corrs_layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, use_xyz=False, is_training=is_training, bn_decay=bn_decay, scope='corrs_layer3')
        # Feature Propagation layers
        l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='corrs_fa_layer1')
        l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='corrs_fa_layer2')
        l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,64], is_training, bn_decay, scope='corrs_fa_layer3')
        # FC layers
        net = tf_util.conv1d(l0_points, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='corrs_fc1', bn_decay=bn_decay)
        net = tf_util.conv1d(net, nfea, 1, padding='VALID', activation_fn=None, scope='corrs_fc2')
        corrsfea = tf.reshape(net, [-1, num_point, nfea])
    return corrsfea 
开发者ID:ericyi,项目名称:articulated-part-induction,代码行数:28,代码来源:model.py

示例12: trans_pred_net

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def trans_pred_net(xyz, flow, scopename, reuse, is_training, bn_decay=None, nfea=12):
    #########################
    # input
    #   xyz: (B x N x 3)
    #   flow: (B x N x 3)
    # output
    #   pred_trans: (B x N x nfea)
    #########################
    num_point = xyz.get_shape()[1].value
    with tf.variable_scope(scopename) as myscope:
        if reuse:
            myscope.reuse_variables()
        l0_xyz = xyz
        l0_points = flow
        # Set Abstraction layers
        l1_xyz, l1_points, l1_indices = pointnet_sa_module_msg(l0_xyz, l0_points, 256, [0.1,0.2], [64,64], [[64,64],[64,64],[64,128]], is_training, bn_decay, scope='trans_layer1', centralize_points=True)
        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='trans_layer2')
        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, use_xyz=True, is_training=is_training, bn_decay=bn_decay, scope='trans_layer3')
        # Feature Propagation layers
        l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='trans_fa_layer1')
        l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='trans_fa_layer2')
        l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,64], is_training, bn_decay, scope='trans_fa_layer3')
        # FC layers
        net = tf_util.conv1d(l0_points, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='trans_fc1', bn_decay=bn_decay)
        net = tf_util.conv1d(net, nfea, 1, padding='VALID', activation_fn=None, scope='trans_fc2')
        pred_trans = tf.reshape(net, [-1, num_point, nfea])
    return pred_trans 
开发者ID:ericyi,项目名称:articulated-part-induction,代码行数:29,代码来源:model.py

示例13: build_pointnet2_seg

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def build_pointnet2_seg(X, out_dim, is_training, bn_decay, scope):
    n_points = X.get_shape()[1].value

    l0_xyz = tf.slice(X, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(X, [0,0,3], [-1,-1,0])

    # Set Abstraction layers
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points,
            npoint=512, radius=0.2, nsample=64, mlp=[64,64,128],
            mlp2=None, group_all=False, is_training=is_training,
            bn_decay=bn_decay, scope='layer1')

    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points,
            npoint=128, radius=0.4, nsample=64, mlp=[128,128,256],
            mlp2=None, group_all=False, is_training=is_training,
            bn_decay=bn_decay, scope='layer2')

    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points,
            npoint=None, radius=None, nsample=None, mlp=[256,512,1024],
            mlp2=None, group_all=True, is_training=is_training,
            bn_decay=bn_decay, scope='layer3')

    # Feature Propagation layers
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points,
            [256,256], is_training, bn_decay, scope='fa_layer1')

    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points,
            [256,128], is_training, bn_decay, scope='fa_layer2')

    l0_points = pointnet_fp_module(l0_xyz, l1_xyz,
            tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128],
            is_training, bn_decay, scope='fa_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True,
            is_training=is_training, scope='fc1', bn_decay=bn_decay)

    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training,
            scope='dp1')

    net = tf_util.conv1d(net, out_dim, 1, padding='VALID', activation_fn=None,
            scope='fc2')

    return net, 0 
开发者ID:mhsung,项目名称:deep-functional-dictionaries,代码行数:46,代码来源:architectures.py

示例14: get_model

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def get_model(point_cloud, is_training, num_class, bn_decay=None):
    """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud[:, :, :3]
    l0_points = point_cloud[:, :, 3:]
    end_points['l0_xyz'] = l0_xyz

    # Layer 1
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
    l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256,256,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4')

    # Feature Propagation layers
    l3_points_sem = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='sem_fa_layer1')
    l2_points_sem = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points_sem, [256,256], is_training, bn_decay, scope='sem_fa_layer2')
    l1_points_sem = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points_sem, [256,128], is_training, bn_decay, scope='sem_fa_layer3')
    l0_points_sem = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points_sem, [128,128,128], is_training, bn_decay, scope='sem_fa_layer4')

    # FC layers
    net_sem = tf_util.conv1d(l0_points_sem, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='sem_fc1', bn_decay=bn_decay)
    net_sem_cache = tf_util.conv1d(net_sem, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='sem_cache',  bn_decay=bn_decay)  

    # ins
    l3_points_ins = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='ins_fa_layer1')
    l2_points_ins = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points_ins, [256,256], is_training, bn_decay, scope='ins_fa_layer2')
    l1_points_ins = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points_ins, [256,128], is_training, bn_decay, scope='ins_fa_layer3')
    l0_points_ins = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points_ins, [128,128,128], is_training, bn_decay, scope='ins_fa_layer4')

    net_ins = tf_util.conv1d(l0_points_ins, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='ins_fc1', bn_decay=bn_decay)

    net_ins = net_ins + net_sem_cache
    net_ins = tf_util.dropout(net_ins, keep_prob=0.5, is_training=is_training, scope='ins_dp1')
    net_ins = tf_util.conv1d(net_ins, 5, 1, padding='VALID', activation_fn=None, scope='ins_fc4')

    k = 30
    adj_matrix = tf_util.pairwise_distance_l1(net_ins)
    nn_idx = tf_util.knn_thres(adj_matrix, k=k)
    nn_idx = tf.stop_gradient(nn_idx)

    net_sem = tf_util.get_local_feature(net_sem, nn_idx=nn_idx, k=k)# [b, n, k, c]
    net_sem = tf.reduce_max(net_sem, axis=-2, keep_dims=False)

    net_sem = tf_util.dropout(net_sem, keep_prob=0.5, is_training=is_training, scope='sem_dp1')
    net_sem = tf_util.conv1d(net_sem, num_class, 1, padding='VALID', activation_fn=None, scope='sem_fc4')

    
    return net_sem, net_ins 
开发者ID:WXinlong,项目名称:ASIS,代码行数:52,代码来源:model.py

示例15: build_pointnet2_seg

# 需要导入模块: import pointnet_util [as 别名]
# 或者: from pointnet_util import pointnet_sa_module [as 别名]
def build_pointnet2_seg(scope, X, out_dims, is_training, bn_decay):
    with tf.variable_scope(scope):
        l0_xyz = tf.slice(X, [0,0,0], [-1,-1,3])
        l0_points = tf.slice(X, [0,0,3], [-1,-1,0])

        # Set Abstraction layers
        l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points,
                npoint=512, radius=0.2, nsample=64, mlp=[64,64,128],
                mlp2=None, group_all=False, is_training=is_training,
                bn_decay=bn_decay, scope='layer1')

        l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points,
                npoint=128, radius=0.4, nsample=64, mlp=[128,128,256],
                mlp2=None, group_all=False, is_training=is_training,
                bn_decay=bn_decay, scope='layer2')

        l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points,
                npoint=None, radius=None, nsample=None, mlp=[256,512,1024],
                mlp2=None, group_all=True, is_training=is_training,
                bn_decay=bn_decay, scope='layer3')

        # Feature Propagation layers
        l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points,
                [256,256], is_training, bn_decay, scope='fa_layer1')

        l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points,
                [256,128], is_training, bn_decay, scope='fa_layer2')

        l0_points = pointnet_fp_module(l0_xyz, l1_xyz,
                tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128],
                is_training, bn_decay, scope='fa_layer3')

        # FC layers
        net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True,
                is_training=is_training, scope='fc1', bn_decay=bn_decay)

        net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training,
                scope='dp1')

        results = []
        for idx, out_dim in enumerate(out_dims):
            current_result = tf_util.conv1d(net, out_dim, 1, padding='VALID', activation_fn=None, scope='fc2_{}'.format(idx))
            results.append(current_result)

        return results 
开发者ID:lingxiaoli94,项目名称:SPFN,代码行数:47,代码来源:architectures.py


注:本文中的pointnet_util.pointnet_sa_module方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。