本文整理汇总了Python中plotly.offline.plot方法的典型用法代码示例。如果您正苦于以下问题:Python offline.plot方法的具体用法?Python offline.plot怎么用?Python offline.plot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类plotly.offline
的用法示例。
在下文中一共展示了offline.plot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: observation_plan
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def observation_plan(target, facility, length=7, interval=60, airmass_limit=None):
"""
Displays form and renders plot for visibility calculation. Using this templatetag to render a plot requires that
the context of the parent view have values for start_time, end_time, and airmass.
"""
visibility_graph = ''
start_time = datetime.now()
end_time = start_time + timedelta(days=length)
visibility_data = get_sidereal_visibility(target, start_time, end_time, interval, airmass_limit)
plot_data = [
go.Scatter(x=data[0], y=data[1], mode='lines', name=site) for site, data in visibility_data.items()
]
layout = go.Layout(yaxis=dict(autorange='reversed'))
visibility_graph = offline.plot(
go.Figure(data=plot_data, layout=layout), output_type='div', show_link=False
)
return {
'visibility_graph': visibility_graph
}
示例2: _draw_scatter
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def _draw_scatter(all_vocabs, all_freqs, output_prefix):
colors = [(s and t) and (s < t and s / t or t / s) or 0
for s, t in all_freqs]
colors = [c and np.log(c) or 0 for c in colors]
trace = go.Scattergl(
x=[s for s, t in all_freqs],
y=[t for s, t in all_freqs],
mode='markers',
text=all_vocabs,
marker=dict(color=colors, showscale=True, colorscale='Viridis'))
layout = go.Layout(
title='Scatter plot of shared tokens',
hovermode='closest',
xaxis=dict(title='src freq', type='log', autorange=True),
yaxis=dict(title='trg freq', type='log', autorange=True))
fig = go.Figure(data=[trace], layout=layout)
py.plot(
fig, filename='{}_scatter.html'.format(output_prefix), auto_open=False)
示例3: __init__
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def __init__(self, contents, plotly_kwargs=None, **kwargs):
"""
Writes out the content as raw text or HTML.
:param contents: Plotly graphics object figure.
:param plotly_kwargs: Kwargs that are passed to plotly plot function.
:param kwargs: Optional styling arguments. The `style` keyword argument has special
meaning in that it allows styling to be grouped as one argument.
It is also useful in case a styling parameter name clashes with a standard
block parameter.
"""
self.resource_deps = [JScript(script_string=po.offline.get_plotlyjs(), name='plotly')]
super(PlotlyPlotBlock, self).__init__(**kwargs)
if not isinstance(contents, PlotlyFigure):
raise ValueError("Expected plotly.graph_objs.graph_objs.Figure type but got %s", type(contents))
plotly_kwargs = plotly_kwargs or {}
prefix = "<script>if (typeof require !== 'undefined') {var Plotly=require('plotly')}</script>"
self._contents = prefix + po.plot(contents, include_plotlyjs=False, output_type='div', **plotly_kwargs)
示例4: calc_graph
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def calc_graph(self):
# calculate graph
graph = []
# format demand values
P_loss_kWh = self.P_loss_kWh.fillna(value=0)
P_loss_kWh = pd.DataFrame(P_loss_kWh.sum(axis=0), columns=['P_loss_kWh'])
Q_loss_kWh = abs(self.thermal_loss_edges_kWh.fillna(value=0))
Q_loss_kWh = pd.DataFrame(Q_loss_kWh.sum(axis=0), columns=['Q_loss_kWh'])
# calculate total_df
total_df = pd.DataFrame(P_loss_kWh.values + Q_loss_kWh.values, index=Q_loss_kWh.index, columns=['total'])
# join dataframes
merged_df = P_loss_kWh.join(Q_loss_kWh).join(total_df)
merged_df = merged_df.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
# iterate through P_loss_kWh to plot
for field in ['P_loss_kWh', 'Q_loss_kWh']:
total_percent = (merged_df[field] / merged_df['total'] * 100).round(2)
total_percent_txt = ["(" + str(x) + " %)" for x in total_percent]
trace = go.Bar(x=merged_df.index, y=merged_df[field].values, name=NAMING[field],
text=total_percent_txt,
orientation='v',
marker=dict(color=COLOR[field]))
graph.append(trace)
return graph
示例5: supply_return_ambient_temp_plot
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def supply_return_ambient_temp_plot(data_frame, data_frame_2, analysis_fields, title, output_path):
traces = []
for field in analysis_fields:
y = data_frame[field].values
# sort by ambient temperature, needs some helper variables
y_old = np.vstack((np.array(data_frame_2.values.T), y))
y_new = np.vstack((np.array(data_frame_2.values.T), y))
y_new[0, :] = y_old[0, :][
y_old[0, :].argsort()] # y_old[0, :] is the ambient temperature which we are sorting by
y_new[1, :] = y_old[1, :][y_old[0, :].argsort()]
trace = go.Scattergl(x=y_new[0], y=y_new[1], name=NAMING[field],
marker=dict(color=COLOR[field]),
mode='markers')
traces.append(trace)
# CREATE FIRST PAGE WITH TIMESERIES
layout = dict(images=LOGO, title=title, yaxis=dict(title='Temperature [deg C]'),
xaxis=dict(title='Ambient Temperature [deg C]'))
fig = dict(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例6: main
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def main():
import cea.config
import cea.inputlocator
config = cea.config.Configuration()
locator = cea.inputlocator.InputLocator(config.scenario)
# cache = cea.plots.cache.PlotCache(config.project)
cache = cea.plots.cache.NullPlotCache()
EnergyDemandDistrictPlot(config.project, {'buildings': None,
'scenario-name': config.scenario_name},
cache).plot(auto_open=True)
EnergyDemandDistrictPlot(config.project, {'buildings': locator.get_zone_building_names()[0:2],
'scenario-name': config.scenario_name},
cache).plot(auto_open=True)
EnergyDemandDistrictPlot(config.project, {'buildings': [locator.get_zone_building_names()[0]],
'scenario-name': config.scenario_name},
cache).plot(auto_open=True)
示例7: pvt_district_monthly
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def pvt_district_monthly(data_frame, analysis_fields, title, output_path):
E_analysis_fields_used = data_frame.columns[data_frame.columns.isin(analysis_fields[0:5])].tolist()
Q_analysis_fields_used = data_frame.columns[data_frame.columns.isin(analysis_fields[5:10])].tolist()
range = calc_range(data_frame, E_analysis_fields_used, Q_analysis_fields_used)
# CALCULATE GRAPH
traces_graphs = calc_graph(E_analysis_fields_used, Q_analysis_fields_used, data_frame)
# CALCULATE TABLE
traces_table = calc_table(E_analysis_fields_used, Q_analysis_fields_used, data_frame)
# PLOT GRAPH
traces_graphs.append(traces_table)
layout = go.Layout(images=LOGO, title=title, barmode='stack',
yaxis=dict(title='PVT Electricity/Heat production [MWh]', domain=[0.35, 1], rangemode='tozero',
scaleanchor='y2', range=range),
yaxis2=dict(overlaying='y', anchor='x', domain=[0.35, 1], range=range))
fig = go.Figure(data=traces_graphs, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces_graphs, 'layout': layout}
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:24,代码来源:b_photovoltaic_thermal_potential.py
示例8: plot_error_curves_pyplot
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def plot_error_curves_pyplot(log_files, names, filename=None, metric="top1_err"):
"""Plot error curves using matplotlib.pyplot and save to file."""
plot_data = prepare_plot_data(log_files, names, metric)
colors = get_plot_colors(len(names))
for ind, d in enumerate(plot_data):
c, lbl = colors[ind], d["test_label"]
plt.plot(d["x_train"], d["y_train"], "--", c=c, alpha=0.8)
plt.plot(d["x_test"], d["y_test"], "-", c=c, alpha=0.8, label=lbl)
plt.title(metric + " vs. epoch\n[dash=train, solid=test]", fontsize=14)
plt.xlabel("epoch", fontsize=14)
plt.ylabel(metric, fontsize=14)
plt.grid(alpha=0.4)
plt.legend()
if filename:
plt.savefig(filename)
plt.clf()
else:
plt.show()
示例9: set_plot_format
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def set_plot_format(plot_format=None, plot_dpi=None):
"""
Overwrite the current plot format settings
:param plot_format: The plot format (e.g. 'png')
:type plot_format: str
:param plot_dpi: The DPI of the plots
:type plot_dpi: int
"""
global _PLOT_FORMAT
global _PLOT_MIME_TYPE
global _PLOT_DPI
if plot_format is not None:
_PLOT_FORMAT = plot_format
_PLOT_MIME_TYPE = _MIME_TYPES[plot_format]
if plot_dpi is not None:
_PLOT_DPI = plot_dpi
示例10: plot_results
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def plot_results(results, plot_name='temp-plot.html'):
'''
results is a list of dictionaries, each of which defines a trace
e.g. [{'x': x_data, 'y': y_data, 'name': 'plot_name'}, {...}, {...}]
Each dictionary's key-value pairs will be passed into go.Scatter
to generate a trace on the graph
'''
traces = []
for input_args in results:
traces.append(go.Scatter(**input_args))
layout = go.Layout(
title='Trading performance over time',
yaxis=dict(
title='Value (USD)'
),
)
plot(go.Figure(data=traces, layout=layout), filename=plot_name)
示例11: plot2D
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def plot2D(data, title=None, viz_type=None, fs=44100, line_names=None):
"""Visualize 2D data using plotly.
Parameters
----------
data : array_like
Data to be plotted, separated along the first dimension (rows)
title : str, optional
Add title to be displayed on plot
viz_type : str{None, 'Time', 'ETC', 'LinFFT', 'LogFFT'}, optional
Type of data to be displayed [Default: None]
fs : int, optional
Sampling rate in Hz [Default: 44100]
line_names : list of str, optional
Add legend to be displayed on plot, with one entry for each data row [Default: None]
"""
viz_type = viz_type.strip().upper() # remove whitespaces and make upper case
layout = layout_2D(viz_type=viz_type, title=title)
# noinspection PyTypeChecker
traces = prepare_2D_traces(data=data, viz_type=viz_type, fs=fs, line_names=line_names)
showTrace(traces, layout=layout, title=title)
示例12: time_series_memory_per_task_plot
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def time_series_memory_per_task_plot(df_resources, resource_type, label):
if resource_type == "psutil_process_memory_percent":
yaxis = dict(title="Memory utilization")
data = [go.Scatter(x=df_resources['timestamp'],
y=df_resources[resource_type])]
else:
yaxis = dict(title='Memory usage (GB)')
data = [go.Scatter(x=df_resources['timestamp'],
y=[num / 1000000000 for num in df_resources[resource_type].astype(float)])]
fig = go.Figure(data=data,
layout=go.Layout(xaxis=dict(tickformat='%m-%d\n%H:%M:%S',
autorange=True,
title='Time'),
yaxis=yaxis,
title=label))
return plot(fig, show_link=False, output_type="div", include_plotlyjs=False)
示例13: save_wordmesh_as_html
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def save_wordmesh_as_html(self, coordinates, filename='temp-plot.html',
animate=False, autozoom=True, notebook_mode=False):
zoom = 1
labels = ['default label']
traces = []
if animate:
for i in range(coordinates.shape[0]):
traces.append(self._get_trace(coordinates[i]))
labels = list(map(str,range(coordinates.shape[0])))
else:
if autozoom:
zoom = self._get_zoom(coordinates)
traces = [self._get_trace(coordinates, zoom=zoom)]
layout = self._get_layout(labels, zoom=zoom)
fig = self.generate_figure(traces, labels, layout)
if notebook_mode:
py.init_notebook_mode(connected=True)
py.iplot(fig, filename=filename, show_link=False)
else:
py.plot(fig, filename=filename, auto_open=False, show_link=False)
示例14: graph
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def graph(self):
# graph the labels
trace0 = go.Scatter(y=self.hist, name='Price')
trace1 = go.Scatter(y=self.savgol, name='Filter')
trace2 = go.Scatter(y=self.savgol_deriv, name='Derivative', yaxis='y2')
data = [trace0, trace1, trace2]
layout = go.Layout(
title='Labels',
yaxis=dict(
title='USDT value'
),
yaxis2=dict(
title='Derivative of Filter',
overlaying='y',
side='right'
)
)
fig = go.Figure(data=data, layout=layout)
py.plot(fig, filename='../docs/label.html')
示例15: test_get_trend_series
# 需要导入模块: from plotly import offline [as 别名]
# 或者: from plotly.offline import plot [as 别名]
def test_get_trend_series(db, client):
# Create 5 reports each with 1 sample. Each has a single field called 'test_field'
data_type = factories.SampleDataTypeFactory()
report = factories.ReportFactory.create_batch(5, samples__data__data_type=data_type)
db.session.add_all(report)
db.session.commit()
# plots = jpi.get('plots/trends/series')
url = url_for(
"rest_api.trend_data",
**{
"filter": json.dumps([]),
"fields": json.dumps([data_type.data_key]),
"control_limits[enabled]": True,
"control_limits[sigma]": 3,
"center_line": "mean",
}
)
response = client.get(url, headers={"Content-Type": "application/json"})
# Check the request was successful
assert response.status_code == 200, response.json
# unknown=EXCLUDE ensures we don't keep the ID field when we load at this point
data = TrendSchema(many=True, unknown=EXCLUDE).load(response.json)
# Check that there are 4 series (mean, stdev, raw data, outliers)
assert len(data) == 4
# Test that this is valid plot data
plot({"data": data}, validate=True, auto_open=False)