当前位置: 首页>>代码示例>>Python>>正文


Python graph_objs.Scattergl方法代码示例

本文整理汇总了Python中plotly.graph_objs.Scattergl方法的典型用法代码示例。如果您正苦于以下问题:Python graph_objs.Scattergl方法的具体用法?Python graph_objs.Scattergl怎么用?Python graph_objs.Scattergl使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在plotly.graph_objs的用法示例。


在下文中一共展示了graph_objs.Scattergl方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _draw_scatter

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def _draw_scatter(all_vocabs, all_freqs, output_prefix):
    colors = [(s and t) and (s < t and s / t or t / s) or 0
              for s, t in all_freqs]
    colors = [c and np.log(c) or 0 for c in colors]
    trace = go.Scattergl(
        x=[s for s, t in all_freqs],
        y=[t for s, t in all_freqs],
        mode='markers',
        text=all_vocabs,
        marker=dict(color=colors, showscale=True, colorscale='Viridis'))
    layout = go.Layout(
        title='Scatter plot of shared tokens',
        hovermode='closest',
        xaxis=dict(title='src freq', type='log', autorange=True),
        yaxis=dict(title='trg freq', type='log', autorange=True))

    fig = go.Figure(data=[trace], layout=layout)
    py.plot(
        fig, filename='{}_scatter.html'.format(output_prefix), auto_open=False) 
开发者ID:vincentzlt,项目名称:textprep,代码行数:21,代码来源:draw.py

示例2: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        data = self.calc_convergence_metrics()
        traces = []
        for field in self.analysis_fieldsy:
            x = data['generation']
            y = data[field]
            trace = go.Scattergl(x=x, y=y, name=field)
            traces.append(trace)

        total_distance = sum(data['Delta of Generational Distance'])
        y_cumulative = []
        for i in range(len(data['generation'])):
            if i == 0:
                y_acum =  data['Delta of Generational Distance'][i]/total_distance *100
            else:
                y_acum += data['Delta of Generational Distance'][i]/total_distance *100
            y_cumulative.append(y_acum)

        x = data['generation']
        trace = go.Scattergl(x=x, y=y_cumulative, yaxis='y2', name='Cumulative Generational Distance')
        traces.append(trace)

        return traces 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:25,代码来源:f_paretocurve_convergence.py

示例3: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        # main data about technologies
        data = self.process_individual_dispatch_curve_cooling()
        graph = []
        analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
        for field in analysis_fields:
            y = (data[field].values) / 1E6  # into MW
            trace = go.Bar(x=data.index, y=y, name=NAMING[field],
                           marker=dict(color=COLOR[field]))
            graph.append(trace)

        # data about demand
        for field in self.analysis_field_demand:
            y = (data[field].values) / 1E6  # into MW
            trace = go.Scattergl(x=data.index, y=y, name=NAMING[field],
                                 line=dict(width=1, color=COLOR[field]))

            graph.append(trace)

        return graph 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:22,代码来源:f_dispatch_curve_cooling_plant.py

示例4: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        # main data about technologies
        data = self.process_individual_dispatch_curve_heating()
        graph = []
        analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
        for field in analysis_fields:
            y = (data[field].values) / 1E6  # into MW
            trace = go.Bar(x=data.index, y=y, name=NAMING[field],
                           marker=dict(color=COLOR[field]))
            graph.append(trace)

        # data about demand
        for field in self.analysis_field_demand:
            y = (data[field].values) / 1E6  # into MW
            trace = go.Scattergl(x=data.index, y=y, name=NAMING[field],
                               line=dict(width=1, color=COLOR[field]))

            graph.append(trace)

        return graph 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:22,代码来源:e_dispatch_curve_heating_plant.py

示例5: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        traces = []
        data_frame = self.plant_temperatures
        analysis_fields = data_frame.columns
        ambient_temp = self.ambient_temp
        for field in analysis_fields:
            y = data_frame[field].values
            # sort by ambient temperature, needs some helper variables
            y_old = np.vstack((np.array(ambient_temp.values.T), y))
            y_new = np.vstack((np.array(ambient_temp.values.T), y))
            y_new[0, :] = y_old[0, :][
                y_old[0, :].argsort()]  # y_old[0, :] is the ambient temperature which we are sorting by
            y_new[1, :] = y_old[1, :][y_old[0, :].argsort()]
            trace = go.Scattergl(x=y_new[0], y=y_new[1], name=NAMING[field],
                               marker=dict(color=COLOR[field]),
                               mode='markers')
            traces.append(trace)
        return traces 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:20,代码来源:e_heating_reset_curve.py

示例6: supply_return_ambient_temp_plot

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def supply_return_ambient_temp_plot(data_frame, data_frame_2, analysis_fields, title, output_path):
    traces = []
    for field in analysis_fields:
        y = data_frame[field].values
        # sort by ambient temperature, needs some helper variables
        y_old = np.vstack((np.array(data_frame_2.values.T), y))
        y_new = np.vstack((np.array(data_frame_2.values.T), y))
        y_new[0, :] = y_old[0, :][
            y_old[0, :].argsort()]  # y_old[0, :] is the ambient temperature which we are sorting by
        y_new[1, :] = y_old[1, :][y_old[0, :].argsort()]
        trace = go.Scattergl(x=y_new[0], y=y_new[1], name=NAMING[field],
                           marker=dict(color=COLOR[field]),
                           mode='markers')
        traces.append(trace)

    # CREATE FIRST PAGE WITH TIMESERIES
    layout = dict(images=LOGO, title=title, yaxis=dict(title='Temperature [deg C]'),
                  xaxis=dict(title='Ambient Temperature [deg C]'))

    fig = dict(data=traces, layout=layout)
    plot(fig, auto_open=False, filename=output_path)

    return {'data': traces, 'layout': layout} 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:25,代码来源:e_heating_reset_curve.py

示例7: heating_reset_schedule

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def heating_reset_schedule(data_frame, analysis_fields, title, output_path):
    # CREATE FIRST PAGE WITH TIMESERIES
    traces = []
    x = data_frame["T_ext_C"].values
    data_frame = data_frame.replace(0, np.nan)
    for field in analysis_fields:
        y = data_frame[field].values
        name = NAMING[field]
        trace = go.Scattergl(x=x, y=y, name=name, mode='markers',
                           marker=dict(color=COLOR[field]))
        traces.append(trace)

    layout = go.Layout(images=LOGO, title=title,
                       xaxis=dict(title='Outdoor Temperature [C]'),
                       yaxis=dict(title='HVAC System Temperature [C]'))
    fig = go.Figure(data=traces, layout=layout)
    plot(fig, auto_open=False, filename=output_path)

    return {'data': traces, 'layout': layout} 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:21,代码来源:heating_reset_schedule.py

示例8: create_relative_humidity_lines

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def create_relative_humidity_lines():
    """
    calculates curves of constant relative humidity for plotting (10% - 100% in steps of 10%)

    :return: list of plotly table trace
    :rtype: list of plotly.graph_objs.Scatter
    """

    traces = []

    # draw lines of constant relative humidity for psychrometric chart
    rh_lines = np.linspace(0.1, 1, 10)  # lines from 10% to 100%
    t_axis = np.linspace(-5, 45, 50)
    P_ATM = 101325  # Pa, standard atmospheric pressure at sea level

    for rh_line in rh_lines:

        y_data = calc_constant_rh_curve(t_axis, rh_line, P_ATM)
        trace = go.Scattergl(x=t_axis, y=y_data, mode='lines', name="{:.0%} relative humidity".format(rh_line),
                           line=dict(color=COLORS_TO_RGB['grey_light'], width=1), showlegend=False)
        traces.append(trace)

    return traces 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:25,代码来源:comfort_chart.py

示例9: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        data = self.calculate_hourly_loads()
        traces = []
        analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
        for field in analysis_fields:
            y = data[field].values / 1E3  # to MW
            name = NAMING[field]
            trace = go.Bar(x=data.index, y=y, name=name, marker=dict(color=COLOR[field]))
            traces.append(trace)

        data_T = self.calculate_external_temperature()
        for field in ["T_ext_C"]:
            y = data_T[field].values
            name = NAMING[field]
            trace = go.Scattergl(x=data_T.index, y=y, name=name, yaxis='y2', opacity=0.2)
            traces.append(trace)
        return traces 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:19,代码来源:load_curve_supply.py

示例10: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        graph = []

        # This includes the point of today's emissions
        data_today = self.process_today_system_performance()
        data_today = self.normalize_data(data_today, self.normalization, self.objectives)
        xs = data_today[self.objectives[0]].values
        ys = data_today[self.objectives[1]].values
        name = "Today"
        trace = go.Scattergl(x=xs, y=ys, mode='markers', name="Today's system", text=name,
                             marker=dict(size=18, color='black', line=dict(color='black',width=2)))
        graph.append(trace)

        # PUT THE PARETO CURVE INSIDE
        data = self.process_generation_total_performance_pareto_with_multi()
        data = self.normalize_data(data, self.normalization, self.objectives)
        xs = data[self.objectives[0]].values
        ys = data[self.objectives[1]].values
        zs = data[self.objectives[2]].values

        individual_names = data['individual_name'].values

        trace = go.Scattergl(x=xs, y=ys, mode='markers', name='Pareto optimal systems', text=individual_names,
                             marker=dict(size=18, color=zs,
                                         colorbar=go.ColorBar(title=self.titlez, titleside='bottom'),
                                         colorscale='Jet', showscale=True, opacity=0.8))
        graph.append(trace)

        # This includes the points of the multicriteria assessment in here
        final_dataframe = calc_final_dataframe(data)
        xs = final_dataframe[self.objectives[0]].values
        ys = final_dataframe[self.objectives[1]].values
        name = final_dataframe["Attribute"].values
        trace = go.Scattergl(x=xs, y=ys, mode='markers', name="Multi-criteria system", text=name,
                             marker=dict(size=18, color='white', line=dict(
                                 color='black',
                                 width=2)))
        graph.append(trace)

        return graph 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:42,代码来源:a_pareto_curve.py

示例11: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        # main data about technologies
        data = self.process_individual_dispatch_curve_electricity()
        graph = []
        analysis_fields = self.remove_unused_fields(data, self.analysis_fields)
        for field in analysis_fields:
            y = (data[field].values) / 1E6  # into MWh
            trace = go.Bar(x=data.index, y=y, name=NAMING[field],
                           marker=dict(color=COLOR[field]))
            graph.append(trace)

        # data about demand
        data_req = self.process_individual_requirements_curve_electricity()
        for field in self.analysis_field_demand:
            y = (data_req[field].values) / 1E6 # into MWh
            trace = go.Scattergl(x=data.index, y=y, name=NAMING[field],
                               line=dict(width=1, color=COLOR[field]))

            graph.append(trace)

        # data about exports
        analysis_fields_exports = self.remove_unused_fields(data, self.analysis_fields_exports)
        for field in analysis_fields_exports:
            y = (data[field].values) / 1E6  # into MWh
            trace = go.Bar(x=data.index, y=y, name=NAMING[field],
                           marker=dict(color=COLOR[field]))

            graph.append(trace)

        return graph 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:32,代码来源:d_dispatch_curve_electricity.py

示例12: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        analysis_fields = ["P_loss_kWh"]  # data to plot
        data_frame = self.plant_pumping_requirement_kWh
        data_frame.columns = analysis_fields
        graph = []
        duration = range(HOURS_IN_YEAR)
        x = [(a - min(duration)) / (max(duration) - min(duration)) * 100 for a in duration]  # calculate relative values
        for field in analysis_fields:
            data_frame = data_frame.sort_values(by=field, ascending=False)
            y = data_frame[field].values
            trace = go.Scattergl(x=x, y=y, name=field, fill='tozeroy', opacity=0.8,
                               marker=dict(color=COLOR[field]))
            graph.append(trace)
        return graph 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:16,代码来源:f_pump_duration_curve.py

示例13: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        data_frame = self.calc_data_frame()
        traces = []
        x = data_frame.index
        for field in data_frame.columns:
            y = data_frame[field].values
            name = NAMING[field]
            trace = go.Scattergl(x=x, y=y, name=name,
                                 marker=dict(color=COLOR[field]))
            traces.append(trace)
        return traces 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:13,代码来源:b_demand_curve.py

示例14: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        traces = []
        data = self.data
        x = data["T_ext_C"].values
        data = data.replace(0, np.nan)
        for field in self.analysis_fields:
            y = data[field].values
            name = NAMING[field]
            trace = go.Scattergl(x=x, y=y, name=name, mode='markers', marker=dict(color=COLOR[field]))
            traces.append(trace)
        return traces 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:13,代码来源:heating_reset_schedule.py

示例15: calc_graph

# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scattergl [as 别名]
def calc_graph(self):
        graph = []
        duration = range(HOURS_IN_YEAR)
        x = [(a - min(duration)) / (max(duration) - min(duration)) * 100 for a in duration]
        self.analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields)
        for field in self.analysis_fields:
            name = NAMING[field]
            y = self.data.sort_values(by=field, ascending=False)[field].values
            trace = go.Scattergl(x=x, y=y, name=name, fill='tozeroy', opacity=0.8,
                               marker=dict(color=COLOR[field]))
            graph.append(trace)
        return graph 
开发者ID:architecture-building-systems,项目名称:CityEnergyAnalyst,代码行数:14,代码来源:load_duration_curve.py


注:本文中的plotly.graph_objs.Scattergl方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。