本文整理汇总了Python中plotly.graph_objs.Scatter方法的典型用法代码示例。如果您正苦于以下问题:Python graph_objs.Scatter方法的具体用法?Python graph_objs.Scatter怎么用?Python graph_objs.Scatter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类plotly.graph_objs
的用法示例。
在下文中一共展示了graph_objs.Scatter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_mean_sr
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def plot_mean_sr(sr_list, time_sr, title, y_title, x_title):
'''Plot a list of series using its mean, with error bar using std'''
mean_sr, std_sr = util.calc_srs_mean_std(sr_list)
max_sr = mean_sr + std_sr
min_sr = mean_sr - std_sr
max_y = max_sr.tolist()
min_y = min_sr.tolist()
x = time_sr.tolist()
color = get_palette(1)[0]
main_trace = go.Scatter(
x=x, y=mean_sr, mode='lines', showlegend=False,
line={'color': color, 'width': 1},
)
envelope_trace = go.Scatter(
x=x + x[::-1], y=max_y + min_y[::-1], showlegend=False,
line={'color': 'rgba(0, 0, 0, 0)'},
fill='tozerox', fillcolor=lower_opacity(color, 0.2),
)
data = [main_trace, envelope_trace]
layout = create_layout(title=title, y_title=y_title, x_title=x_title)
fig = go.Figure(data, layout)
return fig
示例2: lineplot
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def lineplot(xs, ys_population, title, path='', xaxis='episode'):
max_colour, mean_colour, std_colour, transparent = 'rgb(0, 132, 180)', 'rgb(0, 172, 237)', 'rgba(29, 202, 255, 0.2)', 'rgba(0, 0, 0, 0)'
if isinstance(ys_population[0], list) or isinstance(ys_population[0], tuple):
ys = np.asarray(ys_population, dtype=np.float32)
ys_min, ys_max, ys_mean, ys_std, ys_median = ys.min(1), ys.max(1), ys.mean(1), ys.std(1), np.median(ys, 1)
ys_upper, ys_lower = ys_mean + ys_std, ys_mean - ys_std
trace_max = Scatter(x=xs, y=ys_max, line=Line(color=max_colour, dash='dash'), name='Max')
trace_upper = Scatter(x=xs, y=ys_upper, line=Line(color=transparent), name='+1 Std. Dev.', showlegend=False)
trace_mean = Scatter(x=xs, y=ys_mean, fill='tonexty', fillcolor=std_colour, line=Line(color=mean_colour), name='Mean')
trace_lower = Scatter(x=xs, y=ys_lower, fill='tonexty', fillcolor=std_colour, line=Line(color=transparent), name='-1 Std. Dev.', showlegend=False)
trace_min = Scatter(x=xs, y=ys_min, line=Line(color=max_colour, dash='dash'), name='Min')
trace_median = Scatter(x=xs, y=ys_median, line=Line(color=max_colour), name='Median')
data = [trace_upper, trace_mean, trace_lower, trace_min, trace_max, trace_median]
else:
data = [Scatter(x=xs, y=ys_population, line=Line(color=mean_colour))]
plotly.offline.plot({
'data': data,
'layout': dict(title=title, xaxis={'title': xaxis}, yaxis={'title': title})
}, filename=os.path.join(path, title + '.html'), auto_open=False)
示例3: create_time_series
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def create_time_series(dff, column, title):
return {
'data': [go.Scatter(
x=dff['year'],
y=dff[column],
mode='lines+markers',
)],
'layout': {
'height': 225,
'margin': {'l': 50, 'b': 30, 'r': 10, 't': 10},
'annotations': [{
'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom',
'xref': 'paper', 'yref': 'paper', 'showarrow': False,
'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)',
'text': title
}],
'yaxis': {'type': 'linear', 'title': column},
'xaxis': {'showgrid': False}
}
}
示例4: create_interactive_scatter_plot
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def create_interactive_scatter_plot(embeddings_2d, labels, output=None):
clusters_count = compute_clusters_count(labels)
data = []
for i in range(clusters_count):
indexes = labels[labels.Cluster == i].index.values
label_column = "value" if "value" in labels.columns else "type"
trace = go.Scatter(
x=embeddings_2d[indexes, 0],
y=embeddings_2d[indexes, 1],
mode="markers",
text=labels.loc[indexes][label_column].values,
marker={"color": SVG_COLORS[i]}
)
data.append(trace)
kwargs = {"filename": output} if output else {}
plotly.offline.plot(data, **kwargs)
示例5: update_market_prices
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def update_market_prices():
global selected_dropdown_value
global data
prices = data.get_prices(selected_dropdown_value)
prices = [list(p) for p in zip(*prices)]
if len(prices) > 0:
traces = []
x = list(prices[3])
for i, key in enumerate(['bid', 'ask']):
trace = go.Scatter(x=x,
y=prices[i],
name=key,
opacity=0.8)
traces.append(trace)
return {
'data': traces,
'layout': dict(title="Market Prices")
}
示例6: update_spread
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def update_spread():
global selected_dropdown_value
global data
prices = data.get_prices(selected_dropdown_value)
prices = [list(p) for p in zip(*prices)]
if len(prices) > 0:
traces = []
trace = go.Scatter(x=list(prices[3]),
y=list(prices[2]),
name='spread',
line=dict(color='rgb(114, 186, 59)'),
fill='tozeroy',
fillcolor='rgba(114, 186, 59, 0.5)',
mode='none')
traces.append(trace)
return {
'data': traces,
'layout': dict(title="Spread")
}
示例7: plot_line
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def plot_line(xs, ys_population, path=''):
max_colour, mean_colour, std_colour = 'rgb(0, 132, 180)', 'rgb(0, 172, 237)', 'rgba(29, 202, 255, 0.2)'
ys = torch.Tensor(ys_population)
ys_min = ys.min(1)[0].squeeze()
ys_max = ys.max(1)[0].squeeze()
ys_mean = ys.mean(1).squeeze()
ys_std = ys.std(1).squeeze()
ys_upper, ys_lower = ys_mean + ys_std, ys_mean - ys_std
trace_max = Scatter(x=xs, y=ys_max.numpy(), line=Line(color=max_colour, dash='dash'), name='Max')
trace_upper = Scatter(x=xs, y=ys_upper.numpy(), line=Line(color='transparent'), name='+1 Std. Dev.', showlegend=False)
trace_mean = Scatter(x=xs, y=ys_mean.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=mean_colour), name='Mean')
trace_lower = Scatter(x=xs, y=ys_lower.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color='transparent'), name='-1 Std. Dev.', showlegend=False)
trace_min = Scatter(x=xs, y=ys_min.numpy(), line=Line(color=max_colour, dash='dash'), name='Min')
plotly.offline.plot({
'data': [trace_upper, trace_mean, trace_lower, trace_min, trace_max],
'layout': dict(title='Rewards',
xaxis={'title': 'Step'},
yaxis={'title': 'Average Reward'})
}, filename=os.path.join(path, 'rewards.html'), auto_open=False)
示例8: observation_plan
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def observation_plan(target, facility, length=7, interval=60, airmass_limit=None):
"""
Displays form and renders plot for visibility calculation. Using this templatetag to render a plot requires that
the context of the parent view have values for start_time, end_time, and airmass.
"""
visibility_graph = ''
start_time = datetime.now()
end_time = start_time + timedelta(days=length)
visibility_data = get_sidereal_visibility(target, start_time, end_time, interval, airmass_limit)
plot_data = [
go.Scatter(x=data[0], y=data[1], mode='lines', name=site) for site, data in visibility_data.items()
]
layout = go.Layout(yaxis=dict(autorange='reversed'))
visibility_graph = offline.plot(
go.Figure(data=plot_data, layout=layout), output_type='div', show_link=False
)
return {
'visibility_graph': visibility_graph
}
示例9: _draw_scatter
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def _draw_scatter(all_vocabs, all_freqs, output_prefix):
colors = [(s and t) and (s < t and s / t or t / s) or 0
for s, t in all_freqs]
colors = [c and np.log(c) or 0 for c in colors]
trace = go.Scattergl(
x=[s for s, t in all_freqs],
y=[t for s, t in all_freqs],
mode='markers',
text=all_vocabs,
marker=dict(color=colors, showscale=True, colorscale='Viridis'))
layout = go.Layout(
title='Scatter plot of shared tokens',
hovermode='closest',
xaxis=dict(title='src freq', type='log', autorange=True),
yaxis=dict(title='trg freq', type='log', autorange=True))
fig = go.Figure(data=[trace], layout=layout)
py.plot(
fig, filename='{}_scatter.html'.format(output_prefix), auto_open=False)
示例10: _plot_line
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def _plot_line(xs, ys_population, title, path=''):
max_colour, mean_colour, std_colour, transparent = 'rgb(0, 132, 180)', 'rgb(0, 172, 237)', 'rgba(29, 202, 255, 0.2)', 'rgba(0, 0, 0, 0)'
ys = torch.tensor(ys_population, dtype=torch.float32)
ys_min, ys_max, ys_mean, ys_std = ys.min(1)[0].squeeze(), ys.max(1)[0].squeeze(), ys.mean(1).squeeze(), ys.std(1).squeeze()
ys_upper, ys_lower = ys_mean + ys_std, ys_mean - ys_std
trace_max = Scatter(x=xs, y=ys_max.numpy(), line=Line(color=max_colour, dash='dash'), name='Max')
trace_upper = Scatter(x=xs, y=ys_upper.numpy(), line=Line(color=transparent), name='+1 Std. Dev.', showlegend=False)
trace_mean = Scatter(x=xs, y=ys_mean.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=mean_colour), name='Mean')
trace_lower = Scatter(x=xs, y=ys_lower.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=transparent), name='-1 Std. Dev.', showlegend=False)
trace_min = Scatter(x=xs, y=ys_min.numpy(), line=Line(color=max_colour, dash='dash'), name='Min')
plotly.offline.plot({
'data': [trace_upper, trace_mean, trace_lower, trace_min, trace_max],
'layout': dict(title=title, xaxis={'title': 'Step'}, yaxis={'title': title})
}, filename=os.path.join(path, title + '.html'), auto_open=False)
示例11: lines_figure
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def lines_figure(trace_info, varname):
x = np.arange(len(trace_info))
return {
'data': [
go.Scatter(
x=x, y=y,
name="Chain {}".format(chain_ix)
)
for chain_ix, y in enumerate(
trace_info.get_values(varname, combine=False)
)
],
'layout': go.Layout(
yaxis={'title': "Sample value"},
showlegend=False
)
}
示例12: plot_results
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def plot_results(results, plot_name='temp-plot.html'):
'''
results is a list of dictionaries, each of which defines a trace
e.g. [{'x': x_data, 'y': y_data, 'name': 'plot_name'}, {...}, {...}]
Each dictionary's key-value pairs will be passed into go.Scatter
to generate a trace on the graph
'''
traces = []
for input_args in results:
traces.append(go.Scatter(**input_args))
layout = go.Layout(
title='Trading performance over time',
yaxis=dict(
title='Value (USD)'
),
)
plot(go.Figure(data=traces, layout=layout), filename=plot_name)
示例13: plot_line
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def plot_line(xs, ys_population):
max_colour = 'rgb(0, 132, 180)'
mean_colour = 'rgb(0, 172, 237)'
std_colour = 'rgba(29, 202, 255, 0.2)'
ys = torch.Tensor(ys_population)
ys_min = ys.min(1)[0].squeeze()
ys_max = ys.max(1)[0].squeeze()
ys_mean = ys.mean(1).squeeze()
ys_std = ys.std(1).squeeze()
ys_upper, ys_lower = ys_mean + ys_std, ys_mean - ys_std
trace_max = Scatter(x=xs, y=ys_max.numpy(), line=Line(color=max_colour, dash='dash'), name='Max')
trace_upper = Scatter(x=xs, y=ys_upper.numpy(), line=Line(color='transparent'), name='+1 Std. Dev.', showlegend=False)
trace_mean = Scatter(x=xs, y=ys_mean.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=mean_colour), name='Mean')
trace_lower = Scatter(x=xs, y=ys_lower.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color='transparent'), name='-1 Std. Dev.', showlegend=False)
trace_min = Scatter(x=xs, y=ys_min.numpy(), line=Line(color=max_colour, dash='dash'), name='Min')
plotly.offline.plot({
'data': [trace_upper, trace_mean, trace_lower, trace_min, trace_max],
'layout': dict(title='Rewards',
xaxis={'title': 'Step'},
yaxis={'title': 'Average Reward'})
}, filename='rewards.html', auto_open=False)
示例14: plot_line
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def plot_line(xs, ys_population, save_dir):
max_colour = 'rgb(0, 132, 180)'
mean_colour = 'rgb(0, 172, 237)'
std_colour = 'rgba(29, 202, 255, 0.2)'
ys = torch.tensor(ys_population)
ys_min = ys.min(1)[0].squeeze()
ys_max = ys.max(1)[0].squeeze()
ys_mean = ys.mean(1).squeeze()
ys_std = ys.std(1).squeeze()
ys_upper, ys_lower = ys_mean + ys_std, ys_mean - ys_std
trace_max = Scatter(x=xs, y=ys_max.numpy(), line=Line(color=max_colour, dash='dash'), name='Max')
trace_upper = Scatter(x=xs, y=ys_upper.numpy(), line=Line(color='transparent'), name='+1 Std. Dev.', showlegend=False)
trace_mean = Scatter(x=xs, y=ys_mean.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=mean_colour), name='Mean')
trace_lower = Scatter(x=xs, y=ys_lower.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color='transparent'), name='-1 Std. Dev.', showlegend=False)
trace_min = Scatter(x=xs, y=ys_min.numpy(), line=Line(color=max_colour, dash='dash'), name='Min')
plotly.offline.plot({
'data': [trace_upper, trace_mean, trace_lower, trace_min, trace_max],
'layout': dict(title='Rewards',
xaxis={'title': 'Step'},
yaxis={'title': 'Average Reward'})
}, filename=os.path.join(save_dir, 'rewards.html'), auto_open=False)
示例15: prepare_2D_traces
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Scatter [as 别名]
def prepare_2D_traces(data, viz_type, fs, line_names):
data = _np.atleast_2d(data)
N, L = data.shape
x = prepare_2D_x(L, viz_type, fs)
traces = [None] * N
for k in range(0, N):
y = data[k]
traces[k] = go.Scatter(x=x, y=y if viz_type == 'TIME' else 20 * _np.log10(_np.abs(y)))
try:
traces[k].name = line_names[k]
except (TypeError, IndentationError):
pass
return traces