本文整理汇总了Python中plotly.graph_objs.Pie方法的典型用法代码示例。如果您正苦于以下问题:Python graph_objs.Pie方法的具体用法?Python graph_objs.Pie怎么用?Python graph_objs.Pie使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类plotly.graph_objs
的用法示例。
在下文中一共展示了graph_objs.Pie方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: createContent
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def createContent(self):
value = self.getValues("value")
self._data = []
if len(value) == 1:
self._data.append(go.Pie(labels=[""],values=[0],name=value[0]))
示例2: create_total_exports_pie
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def create_total_exports_pie(state):
trace = go.Pie(
labels=df['state'],
values=df['total exports'],
textinfo='none',
marker=dict(
colors=['red' if x == state else 'grey' for x in df['state']]
))
return go.Figure(data=[trace], layout={
'showlegend': False,
'title':
"{:s}'s proportion of total US agriculture exports".format(state)
})
示例3: create_produce_pie
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def create_produce_pie(state):
produce_vars = ["total fruits", "total veggies", "corn", "wheat"]
row = df[df["state"] == state].iloc[0]
trace = go.Pie(
labels=produce_vars,
textinfo="label+percent",
values=[row[v] for v in produce_vars])
return go.Figure(data=[trace], layout={
'showlegend': False,
'title':
"{:s}'s produce distribution".format(state)
})
示例4: create_animal_pie
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def create_animal_pie(state):
animal_vars = ["beef", "pork", "poultry", "dairy"]
row = df[df["state"] == state].iloc[0]
trace = go.Pie(
labels=animal_vars,
textinfo="label+percent",
values=[row[v] for v in animal_vars])
return go.Figure(data=[trace], layout={
'showlegend': False,
'title':
"{:s}'s animal product distribution".format(state),
})
示例5: create_all_pie
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def create_all_pie(state):
vs = list(set(df.columns) - {"Unnamed: 0", "total exports", "state"})
row = df[df["state"] == state].iloc[0]
trace = go.Pie(
labels=vs,
textinfo="label+percent",
values=[row[v] for v in vs])
return go.Figure(data=[trace], layout={
'showlegend': False,
'title':
"{:s}'s agriculture distribution".format(state)
})
示例6: update_pie_chart
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def update_pie_chart(sentiment_term):
# get data from cache
for i in range(100):
sentiment_pie_dict = cache.get('sentiment_shares', sentiment_term)
if sentiment_pie_dict:
break
time.sleep(0.1)
if not sentiment_pie_dict:
return None
labels = ['Positive','Negative']
try: pos = sentiment_pie_dict[1]
except: pos = 0
try: neg = sentiment_pie_dict[-1]
except: neg = 0
values = [pos,neg]
colors = ['#007F25', '#800000']
trace = go.Pie(labels=labels, values=values,
hoverinfo='label+percent', textinfo='value',
textfont=dict(size=20, color=app_colors['text']),
marker=dict(colors=colors,
line=dict(color=app_colors['background'], width=2)))
return {"data":[trace],'layout' : go.Layout(
title='Positive vs Negative sentiment for "{}" (longer-term)'.format(sentiment_term),
font={'color':app_colors['text']},
plot_bgcolor = app_colors['background'],
paper_bgcolor = app_colors['background'],
showlegend=True)}
示例7: name
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def name():
return PlotType.tr('Pie Chart')
示例8: create_trace
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def create_trace(settings):
return [graph_objs.Pie(
labels=settings.x,
values=settings.y,
marker=dict(
colors=settings.data_defined_colors if settings.data_defined_colors else [settings.properties['in_color']]
),
name=settings.properties['custom'][0],
)]
示例9: create
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def create(self):
size = self._gauge.getOpt("size",300)
self._layout = go.Layout(width=size,height=size)
self._data = []
self._tics = go.Pie(values=self._gauge._ticValues,labels=self._gauge._ticLabels,
marker=dict(colors=["rgba(0,0,0,0)"] * (self._gauge._segments + 10),line_width = 0),
direction="clockwise",
rotation=int((((self._gauge._shape + 10) / 100) * 360) / 2),
hole=self._gauge.getOpt("center_size",.40),
sort=False,
showlegend=False,
hoverinfo="none",
textposition="outside",
textinfo="label")
self._data.append(self._tics)
self._intervals = go.Pie(values=self._gauge._intervalValues,
labels=self._gauge._intervalLabels,
text=self._gauge._segmentLabels,
marker=dict(line_width=self._gauge.getOpt("line_width",4)),
marker_colors=self._gauge._intervalColors,
hole=self._gauge.getOpt("center_size",.40),
sort=False,
direction="clockwise",
rotation=int(((self._gauge._shape / 100) * 360) / 2),
showlegend=False,
hoverinfo="none",
textposition="inside",
textinfo="text")
self._data.append(self._intervals)
margin = self._gauge.getOpt("margin",30)
self._layout["margin"] = dict(l=margin,r=margin,b=margin,t=margin)
#self._layout["paper_bgcolor"] = "#e8e8e8"
#self._layout["plot_bgcolor"] = "blue"
#self._layout["paper_bgcolor"] = "rgba(0,0,0,0)"
self._layout["plot_bgcolor"] = "rgba(0,0,0,0)"
self._figure = go.FigureWidget(data=self._data,layout=self._layout)
height = size
height += 30
#self.children = [self._title,self._figure],layout=widgets.Layout(border="1px solid #d8d8d8",width=str(size) + "px",height=str(height) + "px")
self.children = [self._title,self._figure]
示例10: barcode_counts
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def barcode_counts (self,
colors:list=["#f8bc9c", "#f6e9a1", "#f5f8f2", "#92d9f5", "#4f97ba"],
width:int= None,
height:int=500,
plot_title:str="Percentage of reads per barcode"):
"""
Plot a mean quality over time
* colors
List of colors (hex, rgb, rgba, hsl, hsv or any CSS named colors https://www.w3.org/TR/css-color-3/#svg-color
* width
With of the plotting area in pixel
* height
height of the plotting area in pixel
* plot_title
Title to display on top of the plot
"""
# Verify that barcode information are available
if not self.has_barcodes:
raise pycoQCError ("No barcode information available")
self.logger.info ("\t\tComputing plot")
# Prepare all data
lab1, dd1 = self.__barcode_counts_data (df_level="all")
lab2, dd2 = self.__barcode_counts_data (df_level="pass")
# Plot initial data
data= [go.Pie (labels=dd1["labels"][0] , values=dd1["values"][0] , sort=False, marker=dict(colors=colors))]
# Create update buttons
updatemenus = [
dict (type="buttons", active=0, x=-0.2, y=0, xanchor='left', yanchor='bottom', buttons = [
dict (label=lab1, method='restyle', args=[dd1]),
dict (label=lab2, method='restyle', args=[dd2])])]
# tweak plot layout
layout = go.Layout (
plot_bgcolor="whitesmoke",
legend = {"x":-0.2, "y":1,"xanchor":'left',"yanchor":'top'},
updatemenus = updatemenus,
width = width,
height = height,
title = {"text":plot_title, "xref":"paper" ,"x":0.5, "xanchor":"center"})
return go.Figure (data=data, layout=layout)
示例11: alignment_reads_status
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def alignment_reads_status (self,
colors:list=["#f44f39","#fc8161","#fcaf94","#828282"],
width:int= None,
height:int=500,
plot_title:str="Summary of reads alignment status"):
"""
Plot a basic alignment summary
* colors
List of colors (hex, rgb, rgba, hsl, hsv or any CSS named colors https://www.w3.org/TR/css-color-3/#svg-color
* width
With of the plotting area in pixel
* height
height of the plotting area in pixel
* plot_title
Title to display on top of the plot
"""
# Verify that alignemnt information are available
if not self.has_alignment:
raise pycoQCError ("No Alignment information available")
self.logger.info ("\t\tComputing plot")
df = self.alignments_df
# Create empty multiplot figure
fig = make_subplots(rows=1, cols=2, column_widths=[0.4, 0.6], specs=[[{"type": "table"},{"type": "pie"}]])
# plot Table
data = go.Table(
columnwidth = [3,2,2],
header = {"values":list(df.columns), "align":"center", "fill_color":"grey", "font_size":14, "font_color":"white", "height":40},
cells = {"values":df.values.T , "align":"center", "fill_color":"whitesmoke", "font_size":12, "height":30})
fig.add_trace (data, row=1, col=1)
# plot Pie plot
data = go.Pie (
labels=df["Alignments"],
values=df["Counts"],
sort=False,
marker={"colors":colors},
name="Pie plot",
textinfo='label+percent')
fig.add_trace (data, row=1, col=2)
# Change the layout
fig.update_layout(
width = width,
height = height,
title = {"text":plot_title, "xref":"paper" ,"x":0.5, "xanchor":"center"})
return fig
#~~~~~~~ALIGNMENT RATE METHOD AND HELPER~~~~~~~#
示例12: serve_pie_confusion_matrix
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def serve_pie_confusion_matrix(model,
X_test,
y_test,
Z,
threshold):
# Compute threshold
scaled_threshold = threshold * (Z.max() - Z.min()) + Z.min()
y_pred_test = (model.decision_function(X_test) > scaled_threshold).astype(int)
matrix = metrics.confusion_matrix(y_true=y_test, y_pred=y_pred_test)
tn, fp, fn, tp = matrix.ravel()
values = [tp, fn, fp, tn]
label_text = ["True Positive",
"False Negative",
"False Positive",
"True Negative"]
labels = ["TP", "FN", "FP", "TN"]
blue = cl.flipper()['seq']['9']['Blues']
red = cl.flipper()['seq']['9']['Reds']
colors = [blue[4], blue[1], red[1], red[4]]
trace0 = go.Pie(
labels=label_text,
values=values,
hoverinfo='label+value+percent',
textinfo='text+value',
text=labels,
sort=False,
marker=dict(
colors=colors
)
)
layout = go.Layout(
title=f'Confusion Matrix',
margin=dict(l=10, r=10, t=60, b=10),
legend=dict(
bgcolor='rgba(255,255,255,0)',
orientation='h'
)
)
data = [trace0]
figure = go.Figure(data=data, layout=layout)
return figure
示例13: gaugeDiv
# 需要导入模块: from plotly import graph_objs [as 别名]
# 或者: from plotly.graph_objs import Pie [as 别名]
def gaugeDiv(baseLabels, meterLabels, colors, value, suffix):
meterValues = []
meterValues.append(0)
meterSum = 0
# Calculate steps. Then first value is the sum of all the others.
for i in range(1, len(baseLabels)-1):
meterValues.append(float(baseLabels[i+1]) - float(baseLabels[i]))
meterSum += meterValues[i]
meterValues[0] = meterSum
# Dial path. Apply angle from full left position.
rangeValue = float(meterValues[0])
minValue=float(baseLabels[1])
chartCenter=0.5
dialTip=chartCenter-0.12
dialAngle=(value-minValue)*180/rangeValue
dialPath = 'M ' + rotatePoint((chartCenter,0.5),(chartCenter,0.485),dialAngle, 'dialPath') + ' L ' + rotatePoint((chartCenter,0.5),(dialTip,0.5),dialAngle, 'dialPath') + ' L ' + rotatePoint((chartCenter,0.5),(chartCenter,0.515),dialAngle, 'dialPath') + ' Z'
infoText=(str(value) + str(suffix))
# Gauge
meterChart = go.Pie(
values=meterValues, labels=meterLabels,
marker=dict(colors=colors,
line=dict(width=0) # Switch line width to 0 in production
),
name="Gauge", hole=.3, direction="clockwise", rotation=90,
showlegend=False, textinfo="label", textposition="inside", hoverinfo="none",
sort=False
)
# Layout
layout = go.Layout(
xaxis=dict(showticklabels=False, autotick=False, showgrid=False, zeroline=False,),
yaxis=dict(showticklabels=False, autotick=False, showgrid=False, zeroline=False,),
shapes=[dict(
type='path', path=dialPath, fillcolor='rgba(44, 160, 101, 1)',
line=dict(width=0.5), xref='paper', yref='paper'),
],
annotations=[
dict(xref='paper', yref='paper', x=(chartCenter-0.015), y=0.2, text=infoText, font=dict(size='20', color='#ffffff'), showarrow=False),
],
height=260, width=300, margin=dict(l=0, r=0, t=20, b=0, autoexpand=False), plot_bgcolor="rgba(0,0,0,0)", paper_bgcolor="rgba(0,0,0,0)"
)
# Write static values as annotations
for value in baseLabels:
if value is not '-':
annotationDict=dict(
xref='paper', yref='paper', xanchor='center', yanchor='middle',
x=rotatePoint((chartCenter,0.5),((chartCenter-0.45),0.5), ((float(value)-minValue)*180/rangeValue), 'x'),
y=rotatePoint((chartCenter,0.5),((chartCenter-0.45),0.5), ((float(value)-minValue)*180/rangeValue), 'y'),
font=dict(size='12', color='#ffffff'), showarrow=False, text=value,
)
layout['annotations'].append(annotationDict)
# Build HTML div
div = plotly.plot(dict(data=[meterChart], layout=layout), include_plotlyjs=False, show_link=False, output_type='div')
return div