本文整理汇总了Python中pickle.__name__方法的典型用法代码示例。如果您正苦于以下问题:Python pickle.__name__方法的具体用法?Python pickle.__name__怎么用?Python pickle.__name__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pickle
的用法示例。
在下文中一共展示了pickle.__name__方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_load_pyfunc_loads_torch_model_using_pickle_module_specified_at_save_time
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def test_load_pyfunc_loads_torch_model_using_pickle_module_specified_at_save_time(
module_scoped_subclassed_model, model_path):
custom_pickle_module = pickle
mlflow.pytorch.save_model(
path=model_path,
pytorch_model=module_scoped_subclassed_model,
conda_env=None,
pickle_module=custom_pickle_module)
import_module_fn = importlib.import_module
imported_modules = []
def track_module_imports(module_name):
imported_modules.append(module_name)
return import_module_fn(module_name)
with mock.patch("importlib.import_module") as import_mock,\
mock.patch("torch.load") as torch_load_mock:
import_mock.side_effect = track_module_imports
pyfunc.load_pyfunc(model_path)
torch_load_mock.assert_called_with(mock.ANY, pickle_module=custom_pickle_module)
assert custom_pickle_module.__name__ in imported_modules
示例2: get
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def get(cls, curve):
if isinstance(curve, CurveDB):
return curve
elif isinstance(curve, list):
return [CurveDB.get(c) for c in curve]
else:
with open(os.path.join(CurveDB._dirname, str(curve) + cls.file_extension),
'rb' if file_backend.__name__ == 'pickle' else 'r')\
as f:
# rb is for compatibility with python 3
# see http://stackoverflow.com/questions/5512811/builtins-typeerror-must-be-str-not-bytes
curve = CurveDB()
curve._pk, curve.params, data = file_backend.load(f)
curve.data = tuple([np.asarray(a) for a in data])
if isinstance(curve.data, pd.Series): # for backwards compatibility
x, y = curve.data.index.values, curve.data.values
curve.data = (x, y)
return curve
示例3: __repr__
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def __repr__(self):
if hasattr(self, '__getstate__'):
state = repr(self.__getstate__())
else:
state = sorted_dict_repr(self.__dict__)
return "<%s instance with state %s>" % (
type(self).__name__, normalized_repr(state))
示例4: test_load_negative
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def test_load_negative(self):
if cPickle.__name__ == "cPickle": # pickle vs. cPickle report different exceptions, even on Cpy
filename = os.tempnam()
for temp in ['\x02', "No"]:
self.write_to_file(filename, content=temp)
f = open(filename)
self.assertRaises(cPickle.UnpicklingError, cPickle.load, f)
f.close()
示例5: test_load_negative
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def test_load_negative(self):
if cPickle.__name__ == "_pickle": # pickle vs. cPickle report different exceptions, even on Cpy
filename = os.tempnam()
for temp in ['\x02', "No"]:
self.write_to_file(filename, content=temp)
f = open(filename)
self.assertRaises(cPickle.UnpicklingError, cPickle.load, f)
f.close()
示例6: test_load_model_loads_torch_model_using_pickle_module_specified_at_save_time
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def test_load_model_loads_torch_model_using_pickle_module_specified_at_save_time(
module_scoped_subclassed_model):
custom_pickle_module = pickle
artifact_path = "pytorch_model"
with mlflow.start_run():
mlflow.pytorch.log_model(
artifact_path=artifact_path,
pytorch_model=module_scoped_subclassed_model,
conda_env=None,
pickle_module=custom_pickle_module)
model_uri = "runs:/{run_id}/{artifact_path}".format(
run_id=mlflow.active_run().info.run_id,
artifact_path=artifact_path)
import_module_fn = importlib.import_module
imported_modules = []
def track_module_imports(module_name):
imported_modules.append(module_name)
return import_module_fn(module_name)
with mock.patch("importlib.import_module") as import_mock,\
mock.patch("torch.load") as torch_load_mock:
import_mock.side_effect = track_module_imports
pyfunc.load_pyfunc(model_uri=model_uri)
torch_load_mock.assert_called_with(mock.ANY, pickle_module=custom_pickle_module)
assert custom_pickle_module.__name__ in imported_modules
示例7: test_load_model_allows_user_to_override_pickle_module_via_keyword_argument
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def test_load_model_allows_user_to_override_pickle_module_via_keyword_argument(
module_scoped_subclassed_model, model_path):
mlflow.pytorch.save_model(
path=model_path,
pytorch_model=module_scoped_subclassed_model,
conda_env=None,
pickle_module=pickle)
mlflow_torch_pickle_load = mlflow_pytorch_pickle_module.load
pickle_call_results = {
"mlflow_torch_pickle_load_called": False,
}
def validate_mlflow_torch_pickle_load_called(*args, **kwargs):
pickle_call_results["mlflow_torch_pickle_load_called"] = True
return mlflow_torch_pickle_load(*args, **kwargs)
log_messages = []
def custom_warn(message_text, *args, **kwargs):
log_messages.append(message_text % args % kwargs)
with mock.patch("mlflow.pytorch.pickle_module.load") as mlflow_torch_pickle_load_mock,\
mock.patch("mlflow.pytorch._logger.warning") as warn_mock:
mlflow_torch_pickle_load_mock.side_effect = validate_mlflow_torch_pickle_load_called
warn_mock.side_effect = custom_warn
mlflow.pytorch.load_model(model_uri=model_path, pickle_module=mlflow_pytorch_pickle_module)
assert all(pickle_call_results.values())
assert any([
"does not match the pickle module that was used to save the model" in log_message and
pickle.__name__ in log_message and
mlflow_pytorch_pickle_module.__name__ in log_message
for log_message in log_messages
])
示例8: __init__
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def __init__(self, name="some_curve"):
"""
A CurveDB object has
- name = string to give the curve a name
- pk = integer to uniquely identify the curve (the database primary key)
- data = pandas.Series() object to hold any data
- params = dict() with all kinds of parameters
"""
self.logger = logging.getLogger(name=__name__)
self.params = dict()
x, y = np.array([], dtype=np.float), np.array([], dtype=np.float)
self.data = (x, y)
self.name = name
示例9: save
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def save(self):
with open(os.path.join(self._dirname, str(self.pk) + self.file_extension),
'wb' if file_backend.__name__ == 'pickle' else 'w')\
as f:
# wb is for compatibility with python 3
# see http://stackoverflow.com/questions/5512811/builtins-typeerror-must-be-str-not-bytes
data = [a.tolist() for a in self.data]
file_backend.dump([self.pk, self.params, data], f, )
示例10: read_msg
# 需要导入模块: import pickle [as 别名]
# 或者: from pickle import __name__ [as 别名]
def read_msg(self, timeout=None):
"""
Read data from com interface.
:param timeout: timeout for reading data.
:type timeout: float
:return: (True, data) when reading is successful.
(False, None) when other side is closed.
(None, None) when reading is timeouted.
"""
data = self._read_until_len(timeout)
if data is None:
return (None, None)
if len(data) == 0:
return (False, None)
rdata = None
try:
cmd_len = int(data)
rdata = ""
rdata_len = 0
while (rdata_len < cmd_len):
rdata += self.stdin.read(cmd_len - rdata_len)
rdata_len = len(rdata)
rdataIO = StringIO(self.stdin.decode(rdata))
unp = cPickle.Unpickler(rdataIO)
if cPickle.__name__ == 'pickle':
unp.find_class = _map_path
else:
unp.find_global = _map_path
data = unp.load()
except Exception as e:
logging.error("ERROR data:%s rdata:%s" % (data, rdata))
try:
self.write_msg(remote_interface.MessengerError("Communication "
"failed.%s" % (e)))
except OSError:
pass
self.flush_stdin()
raise
# Debugging commands.
# if (isinstance(data, remote_interface.BaseCmd)):
# print data.func
return (True, data)