本文整理汇总了Python中pathos.multiprocessing.ProcessPool方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.ProcessPool方法的具体用法?Python multiprocessing.ProcessPool怎么用?Python multiprocessing.ProcessPool使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pathos.multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.ProcessPool方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from pathos import multiprocessing [as 别名]
# 或者: from pathos.multiprocessing import ProcessPool [as 别名]
def __init__(self, n_cpu=-1):
"""Process pool for applying functions multi-threaded with progress bars.
Arguments:
n_cpu -- The number of processes to spawn. Defaults to the number of threads (logical cores) on your system.
Usage:
>>> pool = mlc.SuperPool() # By default, the cpu count is used
>>> def f(x):
... return x ** 2
>>> res = pool.map(f, range(1000)) # Apply function f to every value in y
[mlcrate] 8 CPUs: 100%|████████████████████████| 1000/1000 [00:00<00:00, 1183.78it/s]
"""
from multiprocessing import cpu_count
from pathos.multiprocessing import ProcessPool
import tqdm
self.tqdm = tqdm
if n_cpu == -1:
n_cpu = cpu_count()
self.n_cpu = n_cpu
self.pool = ProcessPool(n_cpu)
示例2: parse_many
# 需要导入模块: from pathos import multiprocessing [as 别名]
# 或者: from pathos.multiprocessing import ProcessPool [as 别名]
def parse_many(self, jds, validate_tweet=True, multiprocesses=False):
"""Parse many tweets either in a sequencial or in parallel way.
"""
if multiprocesses is None or multiprocesses is False\
or multiprocesses == 0:
results = [
self.parse_one(jd, validate_tweet=validate_tweet) for jd in jds
]
else:
if multiprocesses is True:
pool = ProcessPool(nodes=None)
else:
pool = ProcessPool(nodes=multiprocesses)
results = pool.map(self.parse_one, jds)
if self.save_none_url_tweet is False:
return [r for r in results if r is not None]
else:
return results
示例3: _parallel
# 需要导入模块: from pathos import multiprocessing [as 别名]
# 或者: from pathos.multiprocessing import ProcessPool [as 别名]
def _parallel(ordered: bool, function: Callable, *iterables: Iterable, **kwargs: Any) -> Generator:
"""Returns a generator for a parallel map with a progress bar.
Arguments:
ordered(bool): True for an ordered map, false for an unordered map.
function(Callable): The function to apply to each element of the given Iterables.
iterables(Tuple[Iterable]): One or more Iterables containing the data to be mapped.
Returns:
A generator which will apply the function to each element of the given Iterables
in parallel in order with a progress bar.
"""
# Extract num_cpus
num_cpus = kwargs.pop('num_cpus', None)
# Determine num_cpus
if num_cpus is None:
num_cpus = cpu_count()
elif type(num_cpus) == float:
num_cpus = int(round(num_cpus * cpu_count()))
# Determine length of tqdm (equal to length of shortest iterable)
length = min(len(iterable) for iterable in iterables if isinstance(iterable, Sized))
# Create parallel generator
map_type = 'imap' if ordered else 'uimap'
pool = Pool(num_cpus)
map_func = getattr(pool, map_type)
for item in tqdm(map_func(function, *iterables), total=length, **kwargs):
yield item
pool.clear()
示例4: main
# 需要导入模块: from pathos import multiprocessing [as 别名]
# 或者: from pathos.multiprocessing import ProcessPool [as 别名]
def main(args):
if len(args.input) < 2:
print("Please name at least one STAR file and an output directory")
return 1
if args.apix is None:
print("Using pixel size computed from STAR files")
def do_job(star):
try:
mrc = os.path.join(args.output, os.path.basename(star).replace(".star", ".mrc"))
print("Starting reconstruction of %s" % star)
do_reconstruct(star, mrc, args.apix, args.sym, args.ctf)
print("Wrote %s reconstruction to %s" % (star, mrc))
if args.mask is not None:
masked_mrc = mrc.replace(".mrc", "_masked.mrc")
do_mask(mrc, masked_mrc, args.mask)
print("Wrote masked map %s" % masked_mrc)
if args.mask is not None and args.delete_unmasked:
delete_unmasked(mrc, masked_mrc)
print("Overwrote %s with %s" % (mrc, masked_mrc))
except Exception as e:
print("Failed on %s" % star)
return 0
pool = Pool(nodes=args.nproc)
#pool.apipe(do_job, args.input)
results = pool.imap(do_job, args.input)
codes = list(results)
if pool is not None:
pool.close()
pool.join()
pool.terminate()
return 0
示例5: batch_sim
# 需要导入模块: from pathos import multiprocessing [as 别名]
# 或者: from pathos.multiprocessing import ProcessPool [as 别名]
def batch_sim(sim_instances, parallel=False):
tic = time.time()
if parallel and pathos:
with Pool() as p:
results = p.map(sim, sim_instances)
else:
if parallel and not pathos:
print('Simulation is using single process even though parallel=True.')
results = [sim(s) for s in sim_instances]
toc = time.time()
print('Simulation took {} sec.'.format(toc - tic))
return results
示例6: parallelize_simulations
# 需要导入模块: from pathos import multiprocessing [as 别名]
# 或者: from pathos.multiprocessing import ProcessPool [as 别名]
def parallelize_simulations(
simulation_execs: List[Callable],
var_dict_list: List[VarDictType],
states_lists: List[StatesListsType],
configs_structs: List[ConfigsType],
env_processes_list: List[EnvProcessesType],
Ts: List[range],
SimIDs,
Ns: List[int]
):
print(f'Execution Mode: parallelized')
params = list(
zip(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, SimIDs, Ns)
)
len_configs_structs = len(configs_structs)
unique_runs = Counter(SimIDs)
sim_count = max(unique_runs.values())
highest_divisor = int(len_configs_structs / sim_count)
new_configs_structs, new_params = [], []
for count in range(sim_count):
if count == 0:
new_params.append(
params[count: highest_divisor]
)
new_configs_structs.append(
configs_structs[count: highest_divisor]
)
elif count > 0:
new_params.append(
params[count * highest_divisor: (count + 1) * highest_divisor]
)
new_configs_structs.append(
configs_structs[count * highest_divisor: (count + 1) * highest_divisor]
)
def threaded_executor(params):
tp = TPool(len_configs_structs)
if len_configs_structs > 1:
results = tp.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5], t[6], t[7]), params)
else:
t = params[0]
results = t[0](t[1], t[2], t[3], t[4], t[5], t[6], t[7])
tp.close()
return results
len_new_configs_structs = len(new_configs_structs)
pp = PPool(len_new_configs_structs)
results = flatten(pp.map(lambda params: threaded_executor(params), new_params))
pp.close()
return results