本文整理汇总了Python中param.List方法的典型用法代码示例。如果您正苦于以下问题:Python param.List方法的具体用法?Python param.List怎么用?Python param.List使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类param
的用法示例。
在下文中一共展示了param.List方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: poly_to_geopandas
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def poly_to_geopandas(polys, columns):
"""
Converts a GeoViews Paths or Polygons type to a geopandas dataframe.
Parameters
----------
polys : gv.Path or gv.Polygons
GeoViews element
columns: list(str)
List of columns
Returns
-------
gdf : Geopandas dataframe
"""
rows = []
for g in polys.geom():
rows.append(dict({c: '' for c in columns}, geometry=g))
return gpd.GeoDataFrame(rows, columns=columns+['geometry'])
示例2: from_params
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def from_params(cls, params, **kwargs):
"""Returns Params streams given a dictionary of parameters
Args:
params (dict): Dictionary of parameters
Returns:
List of Params streams
"""
key_fn = lambda x: id(x[1].owner)
streams = []
for _, group in groupby(sorted(params.items(), key=key_fn), key_fn):
group = list(group)
inst = [p.owner for _, p in group][0]
if not isinstance(inst, param.Parameterized):
continue
names = [p.name for _, p in group]
rename = {p.name: n for n, p in group}
streams.append(cls(inst, names, rename=rename, **kwargs))
return streams
示例3: reindex
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def reindex(self, kdims=[], force=False):
"""Reorders key dimensions on DynamicMap
Create a new object with a reordered set of key dimensions.
Dropping dimensions is not allowed on a DynamicMap.
Args:
kdims: List of dimensions to reindex the mapping with
force: Not applicable to a DynamicMap
Returns:
Reindexed DynamicMap
"""
if not isinstance(kdims, list):
kdims = [kdims]
kdims = [self.get_dimension(kd, strict=True) for kd in kdims]
dropped = [kd for kd in self.kdims if kd not in kdims]
if dropped:
raise ValueError("DynamicMap does not allow dropping dimensions, "
"reindex may only be used to reorder dimensions.")
return super(DynamicMap, self).reindex(kdims, force)
示例4: init_graph
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def init_graph(self, datum, options, index=0):
"""
Initialize the plotly components that will represent the element
Parameters
----------
datum: dict
An element of the data list returned by the get_data method
options: dict
Graph options that were returned by the graph_options method
index: int
Index of datum in the original list returned by the get_data method
Returns
-------
dict
Dictionary of the plotly components that represent the element.
Keys may include:
- 'traces': List of trace dicts
- 'annotations': List of annotations dicts
- 'images': List of image dicts
- 'shapes': List of shape dicts
"""
trace = dict(options)
for k, v in datum.items():
if k in trace and isinstance(trace[k], dict):
trace[k].update(v)
else:
trace[k] = v
if self._style_key and self._per_trace:
vectorized = {k: v for k, v in options[self._style_key].items()
if isinstance(v, np.ndarray)}
trace[self._style_key] = dict(trace[self._style_key])
for s, val in vectorized.items():
trace[self._style_key][s] = val[index]
return {'traces': [trace]}
示例5: define
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def define(cls, name, **kwargs):
"""
Utility to quickly and easily declare Stream classes. Designed
for interactive use such as notebooks and shouldn't replace
parameterized class definitions in source code that is imported.
Takes a stream class name and a set of keywords where each
keyword becomes a parameter. If the value is already a
parameter, it is simply used otherwise the appropriate parameter
type is inferred and declared, using the value as the default.
Supported types: bool, int, float, str, dict, tuple and list
"""
params = {'name': param.String(default=name)}
for k, v in kwargs.items():
kws = dict(default=v, constant=True)
if isinstance(v, param.Parameter):
params[k] = v
elif isinstance(v, bool):
params[k] = param.Boolean(**kws)
elif isinstance(v, int):
params[k] = param.Integer(**kws)
elif isinstance(v, float):
params[k] = param.Number(**kws)
elif isinstance(v, str):
params[k] = param.String(**kws)
elif isinstance(v, dict):
params[k] = param.Dict(**kws)
elif isinstance(v, tuple):
params[k] = param.Tuple(**kws)
elif isinstance(v, list):
params[k] = param.List(**kws)
elif isinstance(v, np.ndarray):
params[k] = param.Array(**kws)
else:
params[k] = param.Parameter(**kws)
# Dynamic class creation using type
return type(name, (Stream,), params)
示例6: test_custom_types
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def test_custom_types(self):
self.assertEqual(isinstance(self.TypesTest.param['t'], param.Boolean),True)
self.assertEqual(isinstance(self.TypesTest.param['u'], param.Integer),True)
self.assertEqual(isinstance(self.TypesTest.param['v'], param.Number),True)
self.assertEqual(isinstance(self.TypesTest.param['w'], param.Tuple),True)
self.assertEqual(isinstance(self.TypesTest.param['x'], param.String),True)
self.assertEqual(isinstance(self.TypesTest.param['y'], param.List),True)
self.assertEqual(isinstance(self.TypesTest.param['z'], param.Array),True)
示例7: process_dimensions
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def process_dimensions(kdims, vdims):
"""Converts kdims and vdims to Dimension objects.
Args:
kdims: List or single key dimension(s) specified as strings,
tuples dicts or Dimension objects.
vdims: List or single value dimension(s) specified as strings,
tuples dicts or Dimension objects.
Returns:
Dictionary containing kdims and vdims converted to Dimension
objects:
{'kdims': [Dimension('x')], 'vdims': [Dimension('y')]
"""
dimensions = {}
for group, dims in [('kdims', kdims), ('vdims', vdims)]:
if dims is None:
continue
elif isinstance(dims, (tuple, basestring, Dimension, dict)):
dims = [dims]
elif not isinstance(dims, list):
raise ValueError("%s argument expects a Dimension or list of dimensions, "
"specified as tuples, strings, dictionaries or Dimension "
"instances, not a %s type. Ensure you passed the data as the "
"first argument." % (group, type(dims).__name__))
for dim in dims:
if not isinstance(dim, (tuple, basestring, Dimension, dict)):
raise ValueError('Dimensions must be defined as a tuple, '
'string, dictionary or Dimension instance, '
'found a %s type.' % type(dim).__name__)
dimensions[group] = [asdim(d) for d in dims]
return dimensions
示例8: traverse
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def traverse(self, fn=None, specs=None, full_breadth=True):
"""Traverses object returning matching items
Traverses the set of children of the object, collecting the
all objects matching the defined specs. Each object can be
processed with the supplied function.
Args:
fn (function, optional): Function applied to matched objects
specs: List of specs to match
Specs must be types, functions or type[.group][.label]
specs to select objects to return, by default applies
to all objects.
full_breadth: Whether to traverse all objects
Whether to traverse the full set of objects on each
container or only the first.
Returns:
list: List of objects that matched
"""
if fn is None:
fn = lambda x: x
if specs is not None and not isinstance(specs, (list, set, tuple)):
specs = [specs]
accumulator = []
matches = specs is None
if not matches:
for spec in specs:
matches = self.matches(spec)
if matches: break
if matches:
accumulator.append(fn(self))
# Assumes composite objects are iterables
if self._deep_indexable:
for el in self:
if el is None:
continue
accumulator += el.traverse(fn, specs, full_breadth)
if not full_breadth: break
return accumulator
示例9: map
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def map(self, map_fn, specs=None, clone=True):
"""Map a function to all objects matching the specs
Recursively replaces elements using a map function when the
specs apply, by default applies to all objects, e.g. to apply
the function to all contained Curve objects:
dmap.map(fn, hv.Curve)
Args:
map_fn: Function to apply to each object
specs: List of specs to match
List of types, functions or type[.group][.label] specs
to select objects to return, by default applies to all
objects.
clone: Whether to clone the object or transform inplace
Returns:
Returns the object after the map_fn has been applied
"""
if specs is not None and not isinstance(specs, (list, set, tuple)):
specs = [specs]
applies = specs is None or any(self.matches(spec) for spec in specs)
if self._deep_indexable:
deep_mapped = self.clone(shared_data=False) if clone else self
for k, v in self.items():
new_val = v.map(map_fn, specs, clone)
if new_val is not None:
deep_mapped[k] = new_val
if applies: deep_mapped = map_fn(deep_mapped)
return deep_mapped
else:
return map_fn(self) if applies else self
示例10: closest
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def closest(self, coords, **kwargs):
"""Snap list or dict of coordinates to closest position.
Args:
coords: List of 1D or 2D coordinates
**kwargs: Coordinates specified as keyword pairs
Returns:
List of tuples of the snapped coordinates
Raises:
NotImplementedError: Raised if snapping is not supported
"""
raise NotImplementedError
示例11: array
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def array(self, dimensions=None):
"""Convert dimension values to columnar array.
Args:
dimensions: List of dimensions to return
Returns:
Array of columns corresponding to each dimension
"""
if dimensions is None:
dims = [d for d in self.kdims + self.vdims]
else:
dims = [self.get_dimension(d, strict=True) for d in dimensions]
columns, types = [], []
for dim in dims:
column = self.dimension_values(dim)
columns.append(column)
types.append(column.dtype.kind)
if len(set(types)) > 1:
columns = [c.astype('object') for c in columns]
return np.column_stack(columns)
######################
# Deprecations #
######################
示例12: collate
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def collate(self, merge_type=None, drop=[], drop_constant=False):
"""Collate allows reordering nested containers
Collation allows collapsing nested mapping types by merging
their dimensions. In simple terms in merges nested containers
into a single merged type.
In the simple case a HoloMap containing other HoloMaps can
easily be joined in this way. However collation is
particularly useful when the objects being joined are deeply
nested, e.g. you want to join multiple Layouts recorded at
different times, collation will return one Layout containing
HoloMaps indexed by Time. Changing the merge_type will allow
merging the outer Dimension into any other UniformNdMapping
type.
Args:
merge_type: Type of the object to merge with
drop: List of dimensions to drop
drop_constant: Drop constant dimensions automatically
Returns:
Collated Layout or HoloMap
"""
from .element import Collator
merge_type=merge_type if merge_type else self.__class__
return Collator(self, merge_type=merge_type, drop=drop,
drop_constant=drop_constant)()
示例13: get_nested_dmaps
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def get_nested_dmaps(dmap):
"""Recurses DynamicMap to find DynamicMaps inputs
Args:
dmap: DynamicMap to recurse to look for DynamicMap inputs
Returns:
List of DynamicMap instances that were found
"""
if not isinstance(dmap, DynamicMap):
return []
dmaps = [dmap]
for o in dmap.callback.inputs:
dmaps.extend(get_nested_dmaps(o))
return list(set(dmaps))
示例14: get_nested_streams
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def get_nested_streams(dmap):
"""Recurses supplied DynamicMap to find all streams
Args:
dmap: DynamicMap to recurse to look for streams
Returns:
List of streams that were found
"""
return list({s for dmap in get_nested_dmaps(dmap) for s in dmap.streams})
示例15: keys
# 需要导入模块: import param [as 别名]
# 或者: from param import List [as 别名]
def keys(self, full_grid=False):
"""Returns the keys of the GridSpace
Args:
full_grid (bool, optional): Return full cross-product of keys
Returns:
List of keys
"""
keys = super(GridSpace, self).keys()
if self.ndims == 1 or not full_grid:
return keys
dim1_keys = list(OrderedDict.fromkeys(k[0] for k in keys))
dim2_keys = list(OrderedDict.fromkeys(k[1] for k in keys))
return [(d1, d2) for d1 in dim1_keys for d2 in dim2_keys]