本文整理汇总了Python中papermill.execute_notebook方法的典型用法代码示例。如果您正苦于以下问题:Python papermill.execute_notebook方法的具体用法?Python papermill.execute_notebook怎么用?Python papermill.execute_notebook使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类papermill
的用法示例。
在下文中一共展示了papermill.execute_notebook方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_text_classification_unified_information
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_text_classification_unified_information(notebooks, tmp):
notebook_path = notebooks["tc_unified_information"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
DATA_FOLDER=tmp,
BERT_CACHE_DIR=tmp,
BATCH_SIZE=32,
BATCH_SIZE_PRED=512,
NUM_EPOCHS=1,
TEST=True,
QUICK_RUN=True,
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["accuracy"], 0.93, abs=ABS_TOL)
assert pytest.approx(result["precision"], 0.93, abs=ABS_TOL)
assert pytest.approx(result["recall"], 0.93, abs=ABS_TOL)
assert pytest.approx(result["f1"], 0.93, abs=ABS_TOL)
示例2: test_text_classification_introspective_rationale
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_text_classification_introspective_rationale(notebooks, tmp):
notebook_path = notebooks["tc_introspective_rationale"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
DATA_FOLDER=tmp,
CUDA=torch.cuda.is_available(),
QUICK_RUN=False,
MODEL_SAVE_DIR=tmp
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
print(result)
assert pytest.approx(result["accuracy"], 0.72, abs=ABS_TOL)
assert pytest.approx(result["anti_accuracy"], 0.69, abs=ABS_TOL)
assert pytest.approx(result["sparsity"], 0.17, abs=ABS_TOL)
开发者ID:interpretml,项目名称:interpret-text,代码行数:20,代码来源:test_notebook_introspective_rationale_explainer.py
示例3: test_notebooks_basic_translations_diff
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_notebooks_basic_translations_diff(
isolated_filesystem, translated_notebook
): # pragma: no cover
"""
Test Notebooks in the tutorial translations folder if they have been
modified in the current pull request. This test should not consider any
notebooks locally. It should be used on Github Actions.
"""
notebook = "/".join(translated_notebook.split("/")[-2:])
notebook = f"translations/{notebook}"
list_name = Path(f"examples/tutorials/{notebook}")
tested_notebooks.append(str(list_name))
res = pm.execute_notebook(
notebook,
"/dev/null",
parameters={"epochs": 1, "n_test_batches": 5, "n_train_items": 64, "n_test_items": 64},
timeout=300,
)
assert isinstance(res, nbformat.notebooknode.NotebookNode)
示例4: test_fl_sms
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_fl_sms(isolated_filesystem): # pragma: no cover
sys.path.append("advanced/federated_sms_spam_prediction/")
import preprocess
os.chdir("advanced/federated_sms_spam_prediction/")
notebook = "Federated SMS Spam prediction.ipynb"
p_name = Path("examples/tutorials/advanced/federated_sms_spam_prediction/")
tested_notebooks.append(str(p_name / notebook))
Path("data").mkdir(parents=True, exist_ok=True)
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip"
urllib.request.urlretrieve(url, "data.zip")
with ZipFile("data.zip", "r") as zipObj:
# Extract all the contents of the zip file in current directory
zipObj.extractall()
preprocess.main()
res = pm.execute_notebook(notebook, "/dev/null", parameters={"epochs": 1}, timeout=300)
assert isinstance(res, nbformat.notebooknode.NotebookNode)
示例5: assay_one_notebook
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def assay_one_notebook(notebook_name, test_values):
"""Test a single notebook.
This uses nbformat to append `nteract-scrapbook` commands to the
specified notebook. The content of the commands and their expected
values are stored in the `test_values` dictionary. The keys of this
dictionary are strings to be used as scrapbook keys. They corresponding
value is a `ScrapSpec` tuple. The `code` member of this tuple is
the code (as a string) to be run to generate the scrapbook value. The
`expected` member is a Python object which is checked for equality with
the scrapbook value
Makes certain assumptions about directory layout.
"""
input_notebook = "notebooks/" + notebook_name + ".ipynb"
processed_notebook = "./test/notebooks/" + notebook_name + ".processed.ipynb"
output_notebook = "./test/notebooks/" + notebook_name + ".output.ipynb"
append_scrapbook_commands(input_notebook, processed_notebook, test_values)
pm.execute_notebook(processed_notebook, output_notebook)
nb = sb.read_notebook(output_notebook)
for k, v in test_values.items():
assert nb.scraps[k].data == v.expected
示例6: test_no_raise
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_no_raise(self):
nbs = self.list_notebooks()
here = os.path.dirname(__file__)
out_dir = "{}/out".format(here)
if not os.path.exists(out_dir):
os.mkdir(out_dir)
for nb_input in nbs:
basename = os.path.basename(nb_input)
nb_output = "{}/{}".format(out_dir, basename)
try:
pm.execute_notebook(nb_input, nb_output)
except Exception as e:
with open(nb_output) as f:
print(f.read())
raise e
self.assertEqual(1, 1)
示例7: test_unilm_abstractive_summarization
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_unilm_abstractive_summarization(notebooks, tmp):
notebook_path = notebooks["unilm_abstractive_summarization"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
NUM_GPUS=torch.cuda.device_count(),
TOP_N=100,
WARMUP_STEPS=5,
MAX_STEPS=50,
GRADIENT_ACCUMULATION_STEPS=1,
TEST_PER_GPU_BATCH_SIZE=2,
BEAM_SIZE=3,
MODEL_DIR=tmp,
RESULT_DIR=tmp,
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_1_f_score"], 0.2, abs=ABS_TOL)
assert pytest.approx(result["rouge_2_f_score"], 0.07, abs=ABS_TOL)
assert pytest.approx(result["rouge_l_f_score"], 0.16, abs=ABS_TOL)
示例8: test_entailment_multinli_bert
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_entailment_multinli_bert(notebooks, tmp):
notebook_path = notebooks["entailment_multinli_transformers"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"MODEL_NAME": "bert-base-uncased",
"TO_LOWER": True,
"TRAIN_DATA_USED_FRACTION": 0.05,
"DEV_DATA_USED_FRACTION": 0.05,
"NUM_EPOCHS": 1,
"CACHE_DIR": tmp
},
kernel_name=KERNEL_NAME,
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["matched_precision"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["matched_recall"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["matched_f1"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["mismatched_precision"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["mismatched_recall"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["mismatched_f1"], 0.76, abs=ABS_TOL)
示例9: test_entailment_xnli_bert_azureml
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_entailment_xnli_bert_azureml(
notebooks, subscription_id, resource_group, workspace_name, workspace_region, cluster_name
):
notebook_path = notebooks["entailment_xnli_bert_azureml"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"DATA_PERCENT_USED": 0.0025,
"subscription_id": subscription_id,
"resource_group": resource_group,
"workspace_name": workspace_name,
"workspace_region": workspace_region,
"cluster_name": cluster_name,
},
kernel_name=KERNEL_NAME,
)
with open("outputs/results.json", "r") as handle:
result_dict = json.load(handle)
assert result_dict["weighted avg"]["f1-score"] == pytest.approx(0.2, abs=ABS_TOL)
if os.path.exists("outputs"):
shutil.rmtree("outputs")
示例10: test_minilm_abstractive_summarization
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_minilm_abstractive_summarization(notebooks, tmp):
notebook_path = notebooks["minilm_abstractive_summarization"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
NUM_GPUS=torch.cuda.device_count(),
TOP_N=100,
WARMUP_STEPS=5,
MAX_STEPS=50,
GRADIENT_ACCUMULATION_STEPS=1,
TEST_PER_GPU_BATCH_SIZE=2,
BEAM_SIZE=3,
CLEANUP_RESULTS=True,
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_1_f_score"], 0.2, abs=ABS_TOL)
assert pytest.approx(result["rouge_2_f_score"], 0.07, abs=ABS_TOL)
assert pytest.approx(result["rouge_l_f_score"], 0.16, abs=ABS_TOL)
示例11: test_question_answering_squad_transformers
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_question_answering_squad_transformers(notebooks, tmp):
notebook_path = notebooks["question_answering_squad_transformers"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"TRAIN_DATA_USED_PERCENT": 0.15,
"DEV_DATA_USED_PERCENT": 0.15,
"NUM_EPOCHS": 1,
"MAX_SEQ_LENGTH": 384,
"DOC_STRIDE": 128,
"PER_GPU_BATCH_SIZE": 4,
"MODEL_NAME": "distilbert-base-uncased",
"DO_LOWER_CASE": True,
"CACHE_DIR": tmp
},
kernel_name=KERNEL_NAME,
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["exact"], 0.55, abs=ABS_TOL)
assert pytest.approx(result["f1"], 0.70, abs=ABS_TOL)
示例12: test_bidaf_deep_dive
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_bidaf_deep_dive(
notebooks, subscription_id, resource_group, workspace_name, workspace_region
):
notebook_path = notebooks["bidaf_deep_dive"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"NUM_EPOCHS": 1,
"config_path": None,
"PROJECT_FOLDER": "examples/question_answering/bidaf-question-answering",
"SQUAD_FOLDER": "examples/question_answering/squad",
"LOGS_FOLDER": "examples/question_answering/",
"BIDAF_CONFIG_PATH": "examples/question_answering/",
"subscription_id": subscription_id,
"resource_group": resource_group,
"workspace_name": workspace_name,
"workspace_region": workspace_region,
},
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict["validation_EM"]
assert result == pytest.approx(0.5, abs=ABS_TOL)
示例13: test_bidaf_quickstart
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_bidaf_quickstart(
notebooks, subscription_id, resource_group, workspace_name, workspace_region
):
notebook_path = notebooks["bidaf_quickstart"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"config_path": None,
"subscription_id": subscription_id,
"resource_group": resource_group,
"workspace_name": workspace_name,
"workspace_region": workspace_region,
"webservice_name": "aci-test-service",
},
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict["answer"]
assert result == "Bi-Directional Attention Flow"
示例14: test_extractive_summarization_cnndm_transformers
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_extractive_summarization_cnndm_transformers(notebooks, tmp):
notebook_path = notebooks["extractive_summarization_cnndm_transformer"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
TOP_N=100,
CHUNK_SIZE=200,
USE_PREPROCESSED_DATA=False,
DATA_PATH=tmp,
CACHE_DIR=tmp,
BATCH_SIZE=3000,
REPORT_EVERY=50,
MAX_STEPS=100,
WARMUP_STEPS=5e2,
MODEL_NAME="distilbert-base-uncased",
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_2_f_score"], 0.1, abs=ABS_TOL)
示例15: test_abstractive_summarization_bertsumabs_cnndm
# 需要导入模块: import papermill [as 别名]
# 或者: from papermill import execute_notebook [as 别名]
def test_abstractive_summarization_bertsumabs_cnndm(notebooks, tmp):
notebook_path = notebooks["abstractive_summarization_bertsumabs_cnndm"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
TOP_N=1000,
MAX_POS=512,
DATA_FOLDER=tmp,
CACHE_DIR=tmp,
BATCH_SIZE_PER_GPU=3,
REPORT_EVERY=50,
MAX_STEPS=100,
MODEL_NAME="bert-base-uncased",
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_2_f_score"], 0.01, abs=ABS_TOL)
开发者ID:microsoft,项目名称:nlp-recipes,代码行数:22,代码来源:test_notebooks_abstractive_summarization_bertsumabs.py