本文整理汇总了Python中pandas.util.testing.makeUnicodeIndex方法的典型用法代码示例。如果您正苦于以下问题:Python testing.makeUnicodeIndex方法的具体用法?Python testing.makeUnicodeIndex怎么用?Python testing.makeUnicodeIndex使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.util.testing
的用法示例。
在下文中一共展示了testing.makeUnicodeIndex方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def setup_method(self, method):
self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
strIndex=tm.makeStringIndex(100),
dateIndex=tm.makeDateIndex(100),
periodIndex=tm.makePeriodIndex(100),
tdIndex=tm.makeTimedeltaIndex(100),
intIndex=tm.makeIntIndex(100),
uintIndex=tm.makeUIntIndex(100),
rangeIndex=tm.makeRangeIndex(100),
floatIndex=tm.makeFloatIndex(100),
boolIndex=Index([True, False]),
catIndex=tm.makeCategoricalIndex(100),
empty=Index([]),
tuples=MultiIndex.from_tuples(lzip(
['foo', 'bar', 'baz'], [1, 2, 3])),
repeats=Index([0, 0, 1, 1, 2, 2]))
self.setup_indices()
示例2: get_objs
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def get_objs():
indexes = [
tm.makeBoolIndex(10, name='a'),
tm.makeIntIndex(10, name='a'),
tm.makeFloatIndex(10, name='a'),
tm.makeDateIndex(10, name='a'),
tm.makeDateIndex(10, name='a').tz_localize(tz='US/Eastern'),
tm.makePeriodIndex(10, name='a'),
tm.makeStringIndex(10, name='a'),
tm.makeUnicodeIndex(10, name='a')
]
arr = np.random.randn(10)
series = [Series(arr, index=idx, name='a') for idx in indexes]
objs = indexes + series
return objs
示例3: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def setup_method(self, method):
self.bool_index = tm.makeBoolIndex(10, name='a')
self.int_index = tm.makeIntIndex(10, name='a')
self.float_index = tm.makeFloatIndex(10, name='a')
self.dt_index = tm.makeDateIndex(10, name='a')
self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
tz='US/Eastern')
self.period_index = tm.makePeriodIndex(10, name='a')
self.string_index = tm.makeStringIndex(10, name='a')
self.unicode_index = tm.makeUnicodeIndex(10, name='a')
arr = np.random.randn(10)
self.int_series = Series(arr, index=self.int_index, name='a')
self.float_series = Series(arr, index=self.float_index, name='a')
self.dt_series = Series(arr, index=self.dt_index, name='a')
self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
self.period_series = Series(arr, index=self.period_index, name='a')
self.string_series = Series(arr, index=self.string_index, name='a')
types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
'unicode']
fmts = ["{0}_{1}".format(t, f)
for t in types for f in ['index', 'series']]
self.objs = [getattr(self, f)
for f in fmts if getattr(self, f, None) is not None]
示例4: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def setup_method(self, method):
self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
strIndex=tm.makeStringIndex(100),
dateIndex=tm.makeDateIndex(100),
periodIndex=tm.makePeriodIndex(100),
tdIndex=tm.makeTimedeltaIndex(100),
intIndex=tm.makeIntIndex(100),
uintIndex=tm.makeUIntIndex(100),
rangeIndex=tm.makeIntIndex(100),
floatIndex=tm.makeFloatIndex(100),
boolIndex=Index([True, False]),
catIndex=tm.makeCategoricalIndex(100),
empty=Index([]),
tuples=MultiIndex.from_tuples(lzip(
['foo', 'bar', 'baz'], [1, 2, 3])),
repeats=Index([0, 0, 1, 1, 2, 2]))
self.setup_indices()
示例5: test_invalid_index_types
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_invalid_index_types(self):
# test all index types
for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10),
tm.makePeriodIndex(10)]:
pytest.raises(TypeError, lambda: frequencies.infer_freq(i))
# GH 10822
# odd error message on conversions to datetime for unicode
if not is_platform_windows():
for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]:
pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
示例6: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def setup_method(self, method):
self.bool_index = tm.makeBoolIndex(10, name='a')
self.int_index = tm.makeIntIndex(10, name='a')
self.float_index = tm.makeFloatIndex(10, name='a')
self.dt_index = tm.makeDateIndex(10, name='a')
self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
tz='US/Eastern')
self.period_index = tm.makePeriodIndex(10, name='a')
self.string_index = tm.makeStringIndex(10, name='a')
self.unicode_index = tm.makeUnicodeIndex(10, name='a')
arr = np.random.randn(10)
self.bool_series = Series(arr, index=self.bool_index, name='a')
self.int_series = Series(arr, index=self.int_index, name='a')
self.float_series = Series(arr, index=self.float_index, name='a')
self.dt_series = Series(arr, index=self.dt_index, name='a')
self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
self.period_series = Series(arr, index=self.period_index, name='a')
self.string_series = Series(arr, index=self.string_index, name='a')
self.unicode_series = Series(arr, index=self.unicode_index, name='a')
types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
'unicode']
self.indexes = [getattr(self, '{}_index'.format(t)) for t in types]
self.series = [getattr(self, '{}_series'.format(t)) for t in types]
self.objs = self.indexes + self.series
示例7: test_head_tail
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_head_tail(self):
# GH5370
o = self._construct(shape=10)
# check all index types
for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex,
tm.makeUnicodeIndex, tm.makeDateIndex,
tm.makePeriodIndex]:
axis = o._get_axis_name(0)
setattr(o, axis, index(len(getattr(o, axis))))
# Panel + dims
try:
o.head()
except (NotImplementedError):
pytest.skip('not implemented on {0}'.format(
o.__class__.__name__))
self._compare(o.head(), o.iloc[:5])
self._compare(o.tail(), o.iloc[-5:])
# 0-len
self._compare(o.head(0), o.iloc[0:0])
self._compare(o.tail(0), o.iloc[0:0])
# bounded
self._compare(o.head(len(o) + 1), o)
self._compare(o.tail(len(o) + 1), o)
# neg index
self._compare(o.head(-3), o.head(7))
self._compare(o.tail(-3), o.tail(7))
示例8: test_scalar_error
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_scalar_error(self):
# GH 4892
# float_indexers should raise exceptions
# on appropriate Index types & accessors
# this duplicates the code below
# but is spefically testing for the error
# message
for index in [tm.makeStringIndex, tm.makeUnicodeIndex,
tm.makeCategoricalIndex,
tm.makeDateIndex, tm.makeTimedeltaIndex,
tm.makePeriodIndex, tm.makeIntIndex,
tm.makeRangeIndex]:
i = index(5)
s = Series(np.arange(len(i)), index=i)
msg = 'Cannot index by location index'
with pytest.raises(TypeError, match=msg):
s.iloc[3.0]
def f():
s.iloc[3.0] = 0
pytest.raises(TypeError, f)
示例9: test_grouper_index_types
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_grouper_index_types(self):
# related GH5375
# groupby misbehaving when using a Floatlike index
df = DataFrame(np.arange(10).reshape(5, 2), columns=list('AB'))
for index in [tm.makeFloatIndex, tm.makeStringIndex,
tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex,
tm.makePeriodIndex]:
df.index = index(len(df))
df.groupby(list('abcde')).apply(lambda x: x)
df.index = list(reversed(df.index.tolist()))
df.groupby(list('abcde')).apply(lambda x: x)
示例10: test_to_string_truncate_indices
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_to_string_truncate_indices(self):
for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex,
tm.makeDateIndex, tm.makePeriodIndex]:
for column in [tm.makeStringIndex]:
for h in [10, 20]:
for w in [10, 20]:
with option_context("display.expand_frame_repr",
False):
df = DataFrame(index=index(h), columns=column(w))
with option_context("display.max_rows", 15):
if h == 20:
assert has_vertically_truncated_repr(df)
else:
assert not has_vertically_truncated_repr(
df)
with option_context("display.max_columns", 15):
if w == 20:
assert has_horizontally_truncated_repr(df)
else:
assert not (
has_horizontally_truncated_repr(df))
with option_context("display.max_rows", 15,
"display.max_columns", 15):
if h == 20 and w == 20:
assert has_doubly_truncated_repr(df)
else:
assert not has_doubly_truncated_repr(
df)
示例11: test_unicode
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_unicode(self):
i = tm.makeUnicodeIndex(100)
i_rec = self.encode_decode(i)
tm.assert_index_equal(i, i_rec)
示例12: test_fails_on_no_datetime_index
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_fails_on_no_datetime_index(self):
index_names = ('Int64Index', 'Index', 'Float64Index', 'MultiIndex')
index_funcs = (tm.makeIntIndex,
tm.makeUnicodeIndex, tm.makeFloatIndex,
lambda m: tm.makeCustomIndex(m, 2))
n = 2
for name, func in zip(index_names, index_funcs):
index = func(n)
df = DataFrame({'a': np.random.randn(n)}, index=index)
with tm.assert_raises_regex(TypeError,
"Only valid with "
"DatetimeIndex, TimedeltaIndex "
"or PeriodIndex, but got an "
"instance of %r" % name):
df.groupby(TimeGrouper('D'))
示例13: test_fails_on_no_datetime_index
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_fails_on_no_datetime_index(self):
index_names = ('Int64Index', 'PeriodIndex', 'Index', 'Float64Index',
'MultiIndex')
index_funcs = (tm.makeIntIndex, tm.makePeriodIndex,
tm.makeUnicodeIndex, tm.makeFloatIndex,
lambda m: tm.makeCustomIndex(m, 2))
n = 2
for name, func in zip(index_names, index_funcs):
index = func(n)
df = DataFrame({'a': np.random.randn(n)}, index=index)
with tm.assertRaisesRegexp(TypeError,
"axis must be a DatetimeIndex, "
"but got an instance of %r" % name):
df.groupby(TimeGrouper('D'))
示例14: test_store_index_types
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_store_index_types(self):
# GH5386
# test storing various index types
with ensure_clean_store(self.path) as store:
def check(format,index):
df = DataFrame(np.random.randn(10,2),columns=list('AB'))
df.index = index(len(df))
_maybe_remove(store, 'df')
store.put('df',df,format=format)
assert_frame_equal(df,store['df'])
for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex,
tm.makeDateIndex, tm.makePeriodIndex ]:
check('table',index)
check('fixed',index)
# unicode
index = tm.makeUnicodeIndex
if compat.PY3:
check('table',index)
check('fixed',index)
else:
# only support for fixed types (and they have a perf warning)
self.assertRaises(TypeError, check, 'table', index)
with tm.assert_produces_warning(expected_warning=PerformanceWarning):
check('fixed',index)
示例15: test_unicode
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeUnicodeIndex [as 别名]
def test_unicode(self):
i = tm.makeUnicodeIndex(100)
# this currently fails
self.assertRaises(UnicodeEncodeError, self.encode_decode, i)
#i_rec = self.encode_decode(i)
#self.assert_(i.equals(i_rec))