本文整理汇总了Python中pandas.util.testing.makeStringIndex方法的典型用法代码示例。如果您正苦于以下问题:Python testing.makeStringIndex方法的具体用法?Python testing.makeStringIndex怎么用?Python testing.makeStringIndex使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.util.testing
的用法示例。
在下文中一共展示了testing.makeStringIndex方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def setup_method(self, method):
self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
strIndex=tm.makeStringIndex(100),
dateIndex=tm.makeDateIndex(100),
periodIndex=tm.makePeriodIndex(100),
tdIndex=tm.makeTimedeltaIndex(100),
intIndex=tm.makeIntIndex(100),
uintIndex=tm.makeUIntIndex(100),
rangeIndex=tm.makeRangeIndex(100),
floatIndex=tm.makeFloatIndex(100),
boolIndex=Index([True, False]),
catIndex=tm.makeCategoricalIndex(100),
empty=Index([]),
tuples=MultiIndex.from_tuples(lzip(
['foo', 'bar', 'baz'], [1, 2, 3])),
repeats=Index([0, 0, 1, 1, 2, 2]))
self.setup_indices()
示例2: get_objs
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def get_objs():
indexes = [
tm.makeBoolIndex(10, name='a'),
tm.makeIntIndex(10, name='a'),
tm.makeFloatIndex(10, name='a'),
tm.makeDateIndex(10, name='a'),
tm.makeDateIndex(10, name='a').tz_localize(tz='US/Eastern'),
tm.makePeriodIndex(10, name='a'),
tm.makeStringIndex(10, name='a'),
tm.makeUnicodeIndex(10, name='a')
]
arr = np.random.randn(10)
series = [Series(arr, index=idx, name='a') for idx in indexes]
objs = indexes + series
return objs
示例3: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def setup_method(self, method):
super(TestIndex, self).setup_method(method)
self.d = {
'string': tm.makeStringIndex(100),
'date': tm.makeDateIndex(100),
'int': tm.makeIntIndex(100),
'rng': tm.makeRangeIndex(100),
'float': tm.makeFloatIndex(100),
'empty': Index([]),
'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
'period': Index(period_range('2012-1-1', freq='M', periods=3)),
'date2': Index(date_range('2013-01-1', periods=10)),
'bdate': Index(bdate_range('2013-01-02', periods=10)),
'cat': tm.makeCategoricalIndex(100),
'interval': tm.makeIntervalIndex(100),
'timedelta': tm.makeTimedeltaIndex(100, 'H')
}
self.mi = {
'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'),
('foo', 'two'),
('qux', 'one'), ('qux', 'two')],
names=['first', 'second']),
}
示例4: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def setup_method(self, method):
self.bool_index = tm.makeBoolIndex(10, name='a')
self.int_index = tm.makeIntIndex(10, name='a')
self.float_index = tm.makeFloatIndex(10, name='a')
self.dt_index = tm.makeDateIndex(10, name='a')
self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
tz='US/Eastern')
self.period_index = tm.makePeriodIndex(10, name='a')
self.string_index = tm.makeStringIndex(10, name='a')
self.unicode_index = tm.makeUnicodeIndex(10, name='a')
arr = np.random.randn(10)
self.int_series = Series(arr, index=self.int_index, name='a')
self.float_series = Series(arr, index=self.float_index, name='a')
self.dt_series = Series(arr, index=self.dt_index, name='a')
self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
self.period_series = Series(arr, index=self.period_index, name='a')
self.string_series = Series(arr, index=self.string_index, name='a')
types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
'unicode']
fmts = ["{0}_{1}".format(t, f)
for t in types for f in ['index', 'series']]
self.objs = [getattr(self, f)
for f in fmts if getattr(self, f, None) is not None]
示例5: test_constructor_dict_cast
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def test_constructor_dict_cast(self):
# cast float tests
test_data = {
'A': {'1': 1, '2': 2},
'B': {'1': '1', '2': '2', '3': '3'},
}
frame = DataFrame(test_data, dtype=float)
assert len(frame) == 3
assert frame['B'].dtype == np.float64
assert frame['A'].dtype == np.float64
frame = DataFrame(test_data)
assert len(frame) == 3
assert frame['B'].dtype == np.object_
assert frame['A'].dtype == np.float64
# can't cast to float
test_data = {
'A': dict(zip(range(20), tm.makeStringIndex(20))),
'B': dict(zip(range(15), randn(15)))
}
frame = DataFrame(test_data, dtype=float)
assert len(frame) == 20
assert frame['A'].dtype == np.object_
assert frame['B'].dtype == np.float64
示例6: test_to_html_filename
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def test_to_html_filename(self):
biggie = DataFrame({'A': np.random.randn(200),
'B': tm.makeStringIndex(200)},
index=lrange(200))
biggie.loc[:20, 'A'] = np.nan
biggie.loc[:20, 'B'] = np.nan
with tm.ensure_clean('test.html') as path:
biggie.to_html(path)
with open(path, 'r') as f:
s = biggie.to_html()
s2 = f.read()
assert s == s2
frame = DataFrame(index=np.arange(200))
with tm.ensure_clean('test.html') as path:
frame.to_html(path)
with open(path, 'r') as f:
assert frame.to_html() == f.read()
示例7: setUp
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def setUp(self):
super(TestIndex, self).setUp()
self.d = {
'string': tm.makeStringIndex(100),
'date': tm.makeDateIndex(100),
'int': tm.makeIntIndex(100),
'float': tm.makeFloatIndex(100),
'empty': Index([]),
'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
'period': Index(period_range('2012-1-1', freq='M', periods=3)),
'date2': Index(date_range('2013-01-1', periods=10)),
'bdate': Index(bdate_range('2013-01-02', periods=10)),
}
self.mi = {
'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'),
('qux', 'one'), ('qux', 'two')], names=['first', 'second']),
}
示例8: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def setup_method(self, method):
self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
strIndex=tm.makeStringIndex(100),
dateIndex=tm.makeDateIndex(100),
periodIndex=tm.makePeriodIndex(100),
tdIndex=tm.makeTimedeltaIndex(100),
intIndex=tm.makeIntIndex(100),
uintIndex=tm.makeUIntIndex(100),
rangeIndex=tm.makeIntIndex(100),
floatIndex=tm.makeFloatIndex(100),
boolIndex=Index([True, False]),
catIndex=tm.makeCategoricalIndex(100),
empty=Index([]),
tuples=MultiIndex.from_tuples(lzip(
['foo', 'bar', 'baz'], [1, 2, 3])),
repeats=Index([0, 0, 1, 1, 2, 2]))
self.setup_indices()
示例9: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def setup_method(self, method):
super(TestIndex, self).setup_method(method)
self.d = {
'string': tm.makeStringIndex(100),
'date': tm.makeDateIndex(100),
'int': tm.makeIntIndex(100),
'rng': tm.makeRangeIndex(100),
'float': tm.makeFloatIndex(100),
'empty': Index([]),
'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
'period': Index(period_range('2012-1-1', freq='M', periods=3)),
'date2': Index(date_range('2013-01-1', periods=10)),
'bdate': Index(bdate_range('2013-01-02', periods=10)),
'cat': tm.makeCategoricalIndex(100)
}
self.mi = {
'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'),
('foo', 'two'),
('qux', 'one'), ('qux', 'two')],
names=['first', 'second']),
}
示例10: test_duplicated_large
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def test_duplicated_large(keep):
# GH 9125
n, k = 200, 5000
levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)]
codes = [np.random.choice(n, k * n) for lev in levels]
mi = MultiIndex(levels=levels, codes=codes)
result = mi.duplicated(keep=keep)
expected = hashtable.duplicated_object(mi.values, keep=keep)
tm.assert_numpy_array_equal(result, expected)
示例11: test_invalid_index_types
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def test_invalid_index_types(self):
# test all index types
for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10),
tm.makePeriodIndex(10)]:
pytest.raises(TypeError, lambda: frequencies.infer_freq(i))
# GH 10822
# odd error message on conversions to datetime for unicode
if not is_platform_windows():
for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]:
pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
示例12: setup_method
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def setup_method(self, method):
self.bool_index = tm.makeBoolIndex(10, name='a')
self.int_index = tm.makeIntIndex(10, name='a')
self.float_index = tm.makeFloatIndex(10, name='a')
self.dt_index = tm.makeDateIndex(10, name='a')
self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
tz='US/Eastern')
self.period_index = tm.makePeriodIndex(10, name='a')
self.string_index = tm.makeStringIndex(10, name='a')
self.unicode_index = tm.makeUnicodeIndex(10, name='a')
arr = np.random.randn(10)
self.bool_series = Series(arr, index=self.bool_index, name='a')
self.int_series = Series(arr, index=self.int_index, name='a')
self.float_series = Series(arr, index=self.float_index, name='a')
self.dt_series = Series(arr, index=self.dt_index, name='a')
self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
self.period_series = Series(arr, index=self.period_index, name='a')
self.string_series = Series(arr, index=self.string_index, name='a')
self.unicode_series = Series(arr, index=self.unicode_index, name='a')
types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
'unicode']
self.indexes = [getattr(self, '{}_index'.format(t)) for t in types]
self.series = [getattr(self, '{}_series'.format(t)) for t in types]
self.objs = self.indexes + self.series
示例13: test_head_tail
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def test_head_tail(self):
# GH5370
o = self._construct(shape=10)
# check all index types
for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex,
tm.makeUnicodeIndex, tm.makeDateIndex,
tm.makePeriodIndex]:
axis = o._get_axis_name(0)
setattr(o, axis, index(len(getattr(o, axis))))
# Panel + dims
try:
o.head()
except (NotImplementedError):
pytest.skip('not implemented on {0}'.format(
o.__class__.__name__))
self._compare(o.head(), o.iloc[:5])
self._compare(o.tail(), o.iloc[-5:])
# 0-len
self._compare(o.head(0), o.iloc[0:0])
self._compare(o.tail(0), o.iloc[0:0])
# bounded
self._compare(o.head(len(o) + 1), o)
self._compare(o.tail(len(o) + 1), o)
# neg index
self._compare(o.head(-3), o.head(7))
self._compare(o.tail(-3), o.tail(7))
示例14: test_combine_first
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def test_combine_first(self):
values = tm.makeIntIndex(20).values.astype(float)
series = Series(values, index=tm.makeIntIndex(20))
series_copy = series * 2
series_copy[::2] = np.NaN
# nothing used from the input
combined = series.combine_first(series_copy)
tm.assert_series_equal(combined, series)
# Holes filled from input
combined = series_copy.combine_first(series)
assert np.isfinite(combined).all()
tm.assert_series_equal(combined[::2], series[::2])
tm.assert_series_equal(combined[1::2], series_copy[1::2])
# mixed types
index = tm.makeStringIndex(20)
floats = Series(tm.randn(20), index=index)
strings = Series(tm.makeStringIndex(10), index=index[::2])
combined = strings.combine_first(floats)
tm.assert_series_equal(strings, combined.loc[index[::2]])
tm.assert_series_equal(floats[1::2].astype(object),
combined.loc[index[1::2]])
# corner case
s = Series([1., 2, 3], index=[0, 1, 2])
result = s.combine_first(Series([], index=[]))
assert_series_equal(s, result)
示例15: test_grouper_index_types
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import makeStringIndex [as 别名]
def test_grouper_index_types(self):
# related GH5375
# groupby misbehaving when using a Floatlike index
df = DataFrame(np.arange(10).reshape(5, 2), columns=list('AB'))
for index in [tm.makeFloatIndex, tm.makeStringIndex,
tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex,
tm.makePeriodIndex]:
df.index = index(len(df))
df.groupby(list('abcde')).apply(lambda x: x)
df.index = list(reversed(df.index.tolist()))
df.groupby(list('abcde')).apply(lambda x: x)