本文整理汇总了Python中pandas.util.testing.assert_sp_frame_equal方法的典型用法代码示例。如果您正苦于以下问题:Python testing.assert_sp_frame_equal方法的具体用法?Python testing.assert_sp_frame_equal怎么用?Python testing.assert_sp_frame_equal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.util.testing
的用法示例。
在下文中一共展示了testing.assert_sp_frame_equal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_getitem
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_getitem(self):
orig = pd.DataFrame([[1, np.nan, np.nan],
[2, 3, np.nan],
[np.nan, np.nan, 4],
[0, np.nan, 5]],
columns=list('xyz'))
sparse = orig.to_sparse()
tm.assert_sp_series_equal(sparse['x'], orig['x'].to_sparse())
tm.assert_sp_frame_equal(sparse[['x']], orig[['x']].to_sparse())
tm.assert_sp_frame_equal(sparse[['z', 'x']],
orig[['z', 'x']].to_sparse())
tm.assert_sp_frame_equal(sparse[[True, False, True, True]],
orig[[True, False, True, True]].to_sparse())
tm.assert_sp_frame_equal(sparse.iloc[[1, 2]],
orig.iloc[[1, 2]].to_sparse())
示例2: test_take_fill_value
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_take_fill_value(self):
orig = pd.DataFrame([[1, np.nan, 0],
[2, 3, np.nan],
[0, np.nan, 4],
[0, np.nan, 5]],
columns=list('xyz'))
sparse = orig.to_sparse(fill_value=0)
exp = orig.take([0]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.take([0]), exp)
exp = orig.take([0, 1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.take([0, 1]), exp)
exp = orig.take([-1, -2]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.take([-1, -2]), exp)
示例3: test_reindex
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_reindex(self):
orig = pd.DataFrame([[1, np.nan, 0],
[2, 3, np.nan],
[0, np.nan, 4],
[0, np.nan, 5]],
index=list('ABCD'), columns=list('xyz'))
sparse = orig.to_sparse()
res = sparse.reindex(['A', 'C', 'B'])
exp = orig.reindex(['A', 'C', 'B']).to_sparse()
tm.assert_sp_frame_equal(res, exp)
orig = pd.DataFrame([[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan]],
index=list('ABCD'), columns=list('xyz'))
sparse = orig.to_sparse()
res = sparse.reindex(['A', 'C', 'B'])
exp = orig.reindex(['A', 'C', 'B']).to_sparse()
tm.assert_sp_frame_equal(res, exp)
示例4: test_to_frame
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_to_frame(self):
# GH 9850
s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_sp_frame_equal(s.to_frame(), exp)
exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)
s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
default_fill_value=0)
tm.assert_sp_frame_equal(s.to_frame(), exp)
exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp)
示例5: test_constructor_ndarray
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_constructor_ndarray(self, float_frame):
# no index or columns
sp = SparseDataFrame(float_frame.values)
# 1d
sp = SparseDataFrame(float_frame['A'].values, index=float_frame.index,
columns=['A'])
tm.assert_sp_frame_equal(sp, float_frame.reindex(columns=['A']))
# raise on level argument
pytest.raises(TypeError, float_frame.reindex, columns=['A'],
level=1)
# wrong length index / columns
with pytest.raises(ValueError, match="^Index length"):
SparseDataFrame(float_frame.values, index=float_frame.index[:-1])
with pytest.raises(ValueError, match="^Column length"):
SparseDataFrame(float_frame.values,
columns=float_frame.columns[:-1])
# GH 9272
示例6: test_astype_bool
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_astype_bool(self):
sparse = pd.SparseDataFrame({'A': SparseArray([0, 2, 0, 4],
fill_value=0,
dtype=np.int64),
'B': SparseArray([0, 5, 0, 7],
fill_value=0,
dtype=np.int64)},
default_fill_value=0)
assert sparse['A'].dtype == SparseDtype(np.int64)
assert sparse['B'].dtype == SparseDtype(np.int64)
res = sparse.astype(SparseDtype(bool, False))
exp = pd.SparseDataFrame({'A': SparseArray([False, True, False, True],
dtype=np.bool,
fill_value=False,
kind='integer'),
'B': SparseArray([False, True, False, True],
dtype=np.bool,
fill_value=False,
kind='integer')},
default_fill_value=False)
tm.assert_sp_frame_equal(res, exp)
assert res['A'].dtype == SparseDtype(np.bool)
assert res['B'].dtype == SparseDtype(np.bool)
示例7: test_transpose
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_transpose(self, float_frame, float_frame_int_kind,
float_frame_dense,
float_frame_fill0, float_frame_fill0_dense,
float_frame_fill2, float_frame_fill2_dense):
def _check(frame, orig):
transposed = frame.T
untransposed = transposed.T
tm.assert_sp_frame_equal(frame, untransposed)
tm.assert_frame_equal(frame.T.to_dense(), orig.T)
tm.assert_frame_equal(frame.T.T.to_dense(), orig.T.T)
tm.assert_sp_frame_equal(frame, frame.T.T, exact_indices=False)
_check(float_frame, float_frame_dense)
_check(float_frame_int_kind, float_frame_dense)
_check(float_frame_fill0, float_frame_fill0_dense)
_check(float_frame_fill2, float_frame_fill2_dense)
示例8: test_isna
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_isna(self):
# GH 8276
df = pd.SparseDataFrame({'A': [np.nan, np.nan, 1, 2, np.nan],
'B': [0, np.nan, np.nan, 2, np.nan]})
res = df.isna()
exp = pd.SparseDataFrame({'A': [True, True, False, False, True],
'B': [False, True, True, False, True]},
default_fill_value=True)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# if fill_value is not nan, True can be included in sp_values
df = pd.SparseDataFrame({'A': [0, 0, 1, 2, np.nan],
'B': [0, np.nan, 0, 2, np.nan]},
default_fill_value=0.)
res = df.isna()
assert isinstance(res, pd.SparseDataFrame)
exp = pd.DataFrame({'A': [False, False, False, False, True],
'B': [False, True, False, False, True]})
tm.assert_frame_equal(res.to_dense(), exp)
示例9: test_notna
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_notna(self):
# GH 8276
df = pd.SparseDataFrame({'A': [np.nan, np.nan, 1, 2, np.nan],
'B': [0, np.nan, np.nan, 2, np.nan]})
res = df.notna()
exp = pd.SparseDataFrame({'A': [False, False, True, True, False],
'B': [True, False, False, True, False]},
default_fill_value=False)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# if fill_value is not nan, True can be included in sp_values
df = pd.SparseDataFrame({'A': [0, 0, 1, 2, np.nan],
'B': [0, np.nan, 0, 2, np.nan]},
default_fill_value=0.)
res = df.notna()
assert isinstance(res, pd.SparseDataFrame)
exp = pd.DataFrame({'A': [True, True, True, True, False],
'B': [True, False, True, True, False]})
tm.assert_frame_equal(res.to_dense(), exp)
示例10: test_from_scipy_correct_ordering
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_from_scipy_correct_ordering(spmatrix):
# GH 16179
arr = np.arange(1, 5).reshape(2, 2)
try:
spm = spmatrix(arr)
assert spm.dtype == arr.dtype
except (TypeError, AssertionError):
# If conversion to sparse fails for this spmatrix type and arr.dtype,
# then the combination is not currently supported in NumPy, so we
# can just skip testing it thoroughly
return
sdf = SparseDataFrame(spm)
expected = SparseDataFrame(arr)
tm.assert_sp_frame_equal(sdf, expected)
tm.assert_frame_equal(sdf.to_dense(), expected.to_dense())
示例11: test_subclass_sparse_to_frame
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_subclass_sparse_to_frame(self):
s = tm.SubclassedSparseSeries([1, 2], index=list('ab'), name='xxx')
res = s.to_frame()
exp_arr = pd.SparseArray([1, 2], dtype=np.int64, kind='block',
fill_value=0)
exp = tm.SubclassedSparseDataFrame({'xxx': exp_arr},
index=list('ab'),
default_fill_value=0)
tm.assert_sp_frame_equal(res, exp)
# create from int dict
res = tm.SubclassedSparseDataFrame({'xxx': [1, 2]},
index=list('ab'),
default_fill_value=0)
tm.assert_sp_frame_equal(res, exp)
s = tm.SubclassedSparseSeries([1.1, 2.1], index=list('ab'),
name='xxx')
res = s.to_frame()
exp = tm.SubclassedSparseDataFrame({'xxx': [1.1, 2.1]},
index=list('ab'))
tm.assert_sp_frame_equal(res, exp)
示例12: test_subclass_sparse_slice
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_subclass_sparse_slice(self):
rows = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]
ssdf = tm.SubclassedSparseDataFrame(rows)
ssdf.testattr = "testattr"
tm.assert_sp_frame_equal(ssdf.loc[:2],
tm.SubclassedSparseDataFrame(rows[:3]))
tm.assert_sp_frame_equal(ssdf.iloc[:2],
tm.SubclassedSparseDataFrame(rows[:2]))
tm.assert_sp_frame_equal(ssdf[:2],
tm.SubclassedSparseDataFrame(rows[:2]))
assert ssdf.loc[:2].testattr == "testattr"
assert ssdf.iloc[:2].testattr == "testattr"
assert ssdf[:2].testattr == "testattr"
tm.assert_sp_series_equal(ssdf.loc[1],
tm.SubclassedSparseSeries(rows[1]),
check_names=False,
check_kind=False)
tm.assert_sp_series_equal(ssdf.iloc[1],
tm.SubclassedSparseSeries(rows[1]),
check_names=False,
check_kind=False)
示例13: test_getitem_fill_value
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_getitem_fill_value(self):
orig = pd.DataFrame([[1, np.nan, 0],
[2, 3, np.nan],
[0, np.nan, 4],
[0, np.nan, 5]],
columns=list('xyz'))
sparse = orig.to_sparse(fill_value=0)
result = sparse[['z']]
expected = orig[['z']].to_sparse(fill_value=0)
tm.assert_sp_frame_equal(result, expected, check_fill_value=False)
tm.assert_sp_series_equal(sparse['y'],
orig['y'].to_sparse(fill_value=0))
exp = orig[['x']].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse[['x']], exp)
exp = orig[['z', 'x']].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse[['z', 'x']], exp)
indexer = [True, False, True, True]
exp = orig[indexer].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse[indexer], exp)
exp = orig.iloc[[1, 2]].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.iloc[[1, 2]], exp)
示例14: test_loc_slice
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_loc_slice(self):
orig = pd.DataFrame([[1, np.nan, np.nan],
[2, 3, np.nan],
[np.nan, np.nan, 4]],
columns=list('xyz'))
sparse = orig.to_sparse()
tm.assert_sp_frame_equal(sparse.loc[2:], orig.loc[2:].to_sparse())
示例15: test_iloc_slice
# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_sp_frame_equal [as 别名]
def test_iloc_slice(self):
orig = pd.DataFrame([[1, np.nan, np.nan],
[2, 3, np.nan],
[np.nan, np.nan, 4]],
columns=list('xyz'))
sparse = orig.to_sparse()
tm.assert_sp_frame_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse())