当前位置: 首页>>代码示例>>Python>>正文


Python testing.assert_dict_equal方法代码示例

本文整理汇总了Python中pandas.util.testing.assert_dict_equal方法的典型用法代码示例。如果您正苦于以下问题:Python testing.assert_dict_equal方法的具体用法?Python testing.assert_dict_equal怎么用?Python testing.assert_dict_equal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.util.testing的用法示例。


在下文中一共展示了testing.assert_dict_equal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_index_groupby

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_index_groupby(self):
        int_idx = Index(range(6))
        float_idx = Index(np.arange(0, 0.6, 0.1))
        obj_idx = Index('A B C D E F'.split())
        dt_idx = pd.date_range('2013-01-01', freq='M', periods=6)

        for idx in [int_idx, float_idx, obj_idx, dt_idx]:
            to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1])
            tm.assert_dict_equal(idx.groupby(to_groupby),
                                 {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]})

            to_groupby = Index([datetime(2011, 11, 1),
                                datetime(2011, 12, 1),
                                pd.NaT,
                                pd.NaT,
                                datetime(2011, 12, 1),
                                datetime(2011, 11, 1)],
                               tz='UTC').values

            ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')]
            expected = {ex_keys[0]: idx[[0, 5]],
                        ex_keys[1]: idx[[1, 4]]}
            tm.assert_dict_equal(idx.groupby(to_groupby), expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:25,代码来源:test_numeric.py

示例2: test_observed_groups

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_observed_groups(observed):
    # gh-20583
    # test that we have the appropriate groups

    cat = pd.Categorical(['a', 'c', 'a'], categories=['a', 'b', 'c'])
    df = pd.DataFrame({'cat': cat, 'vals': [1, 2, 3]})
    g = df.groupby('cat', observed=observed)

    result = g.groups
    if observed:
        expected = {'a': Index([0, 2], dtype='int64'),
                    'c': Index([1], dtype='int64')}
    else:
        expected = {'a': Index([0, 2], dtype='int64'),
                    'b': Index([], dtype='int64'),
                    'c': Index([1], dtype='int64')}

    tm.assert_dict_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:20,代码来源:test_categorical.py

示例3: test_multiindex_columns_empty_level

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_multiindex_columns_empty_level(self):
        lst = [['count', 'values'], ['to filter', '']]
        midx = MultiIndex.from_tuples(lst)

        df = DataFrame([[long(1), 'A']], columns=midx)

        grouped = df.groupby('to filter').groups
        assert grouped['A'] == [0]

        grouped = df.groupby([('to filter', '')]).groups
        assert grouped['A'] == [0]

        df = DataFrame([[long(1), 'A'], [long(2), 'B']], columns=midx)

        expected = df.groupby('to filter').groups
        result = df.groupby([('to filter', '')]).groups
        assert result == expected

        df = DataFrame([[long(1), 'A'], [long(2), 'A']], columns=midx)

        expected = df.groupby('to filter').groups
        result = df.groupby([('to filter', '')]).groups
        tm.assert_dict_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:25,代码来源:test_grouping.py

示例4: test_groupby_multiindex_tuple

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_groupby_multiindex_tuple(self):
        # GH 17979
        df = pd.DataFrame([[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]],
                          columns=pd.MultiIndex.from_arrays(
                              [['a', 'b', 'b', 'c'],
                               [1, 1, 2, 2]]))
        expected = df.groupby([('b', 1)]).groups
        result = df.groupby(('b', 1)).groups
        tm.assert_dict_equal(expected, result)

        df2 = pd.DataFrame(df.values,
                           columns=pd.MultiIndex.from_arrays(
                               [['a', 'b', 'b', 'c'],
                                ['d', 'd', 'e', 'e']]))
        expected = df2.groupby([('b', 'd')]).groups
        result = df.groupby(('b', 1)).groups
        tm.assert_dict_equal(expected, result)

        df3 = pd.DataFrame(df.values,
                           columns=[('a', 'd'), ('b', 'd'), ('b', 'e'), 'c'])
        expected = df3.groupby([('b', 'd')]).groups
        result = df.groupby(('b', 1)).groups
        tm.assert_dict_equal(expected, result) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:25,代码来源:test_grouping.py

示例5: test_list_grouper_with_nat

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_list_grouper_with_nat(self):
        # GH 14715
        df = pd.DataFrame({'date': pd.date_range('1/1/2011',
                                                 periods=365, freq='D')})
        df.iloc[-1] = pd.NaT
        grouper = pd.Grouper(key='date', freq='AS')

        # Grouper in a list grouping
        result = df.groupby([grouper])
        expected = {pd.Timestamp('2011-01-01'): pd.Index(list(range(364)))}
        tm.assert_dict_equal(result.groups, expected)

        # Test case without a list
        result = df.groupby(grouper)
        expected = {pd.Timestamp('2011-01-01'): 365}
        tm.assert_dict_equal(result.groups, expected)


# get_group
# -------------------------------- 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:22,代码来源:test_grouping.py

示例6: test_groupby

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_groupby(self):
        index = Index(range(5))
        result = index.groupby(np.array([1, 1, 2, 2, 2]))
        expected = {1: pd.Index([0, 1]), 2: pd.Index([2, 3, 4])}

        tm.assert_dict_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:8,代码来源:test_base.py

示例7: test_groupby

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_groupby(idx):
    groups = idx.groupby(np.array([1, 1, 1, 2, 2, 2]))
    labels = idx.get_values().tolist()
    exp = {1: labels[:3], 2: labels[3:]}
    tm.assert_dict_equal(groups, exp)

    # GH5620
    groups = idx.groupby(idx)
    exp = {key: [key] for key in idx}
    tm.assert_dict_equal(groups, exp) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:12,代码来源:test_analytics.py

示例8: test_pickle_v0_15_2

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_pickle_v0_15_2(self, datapath):
        offsets = {'DateOffset': DateOffset(years=1),
                   'MonthBegin': MonthBegin(1),
                   'Day': Day(1),
                   'YearBegin': YearBegin(1),
                   'Week': Week(1)}

        pickle_path = datapath('tseries', 'offsets', 'data',
                               'dateoffset_0_15_2.pickle')
        # This code was executed once on v0.15.2 to generate the pickle:
        # with open(pickle_path, 'wb') as f: pickle.dump(offsets, f)
        #
        tm.assert_dict_equal(offsets, read_pickle(pickle_path)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:15,代码来源:test_offsets.py

示例9: test_query_inplace

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_query_inplace(self):
        # see gh-11149
        df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
        expected = df.copy()
        expected = expected[expected['a'] == 2]
        df.query('a == 2', inplace=True)
        assert_frame_equal(expected, df)

        df = {}
        expected = {"a": 3}

        self.eval("a = 1 + 2", target=df, inplace=True)
        tm.assert_dict_equal(df, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:15,代码来源:test_eval.py

示例10: test_observed_groups_with_nan

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_observed_groups_with_nan(observed):
    # GH 24740
    df = pd.DataFrame({'cat': pd.Categorical(['a', np.nan, 'a'],
                       categories=['a', 'b', 'd']),
                       'vals': [1, 2, 3]})
    g = df.groupby('cat', observed=observed)
    result = g.groups
    if observed:
        expected = {'a': Index([0, 2], dtype='int64')}
    else:
        expected = {'a': Index([0, 2], dtype='int64'),
                    'b': Index([], dtype='int64'),
                    'd': Index([], dtype='int64')}
    tm.assert_dict_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:16,代码来源:test_categorical.py

示例11: test_frame_to_dict_tz

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_frame_to_dict_tz(self):
        # GH18372 When converting to dict with orient='records' columns of
        # datetime that are tz-aware were not converted to required arrays
        data = [(datetime(2017, 11, 18, 21, 53, 0, 219225, tzinfo=pytz.utc),),
                (datetime(2017, 11, 18, 22, 6, 30, 61810, tzinfo=pytz.utc,),)]
        df = DataFrame(list(data), columns=["d", ])

        result = df.to_dict(orient='records')
        expected = [
            {'d': Timestamp('2017-11-18 21:53:00.219225+0000', tz=pytz.utc)},
            {'d': Timestamp('2017-11-18 22:06:30.061810+0000', tz=pytz.utc)},
        ]
        tm.assert_dict_equal(result[0], expected[0])
        tm.assert_dict_equal(result[1], expected[1]) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:16,代码来源:test_convert_to.py

示例12: test_read_dta18

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_read_dta18(self):
        parsed_118 = self.read_dta(self.dta22_118)
        parsed_118["Bytes"] = parsed_118["Bytes"].astype('O')
        expected = DataFrame.from_records(
            [['Cat', 'Bogota', u'Bogotá', 1, 1.0, u'option b Ünicode', 1.0],
             ['Dog', 'Boston', u'Uzunköprü', np.nan, np.nan, np.nan, np.nan],
             ['Plane', 'Rome', u'Tromsø', 0, 0.0, 'option a', 0.0],
             ['Potato', 'Tokyo', u'Elâzığ', -4, 4.0, 4, 4],
             ['', '', '', 0, 0.3332999, 'option a', 1 / 3.]
             ],
            columns=['Things', 'Cities', 'Unicode_Cities_Strl',
                     'Ints', 'Floats', 'Bytes', 'Longs'])
        expected["Floats"] = expected["Floats"].astype(np.float32)
        for col in parsed_118.columns:
            tm.assert_almost_equal(parsed_118[col], expected[col])

        with StataReader(self.dta22_118) as rdr:
            vl = rdr.variable_labels()
            vl_expected = {u'Unicode_Cities_Strl':
                           u'Here are some strls with Ünicode chars',
                           u'Longs': u'long data',
                           u'Things': u'Here are some things',
                           u'Bytes': u'byte data',
                           u'Ints': u'int data',
                           u'Cities': u'Here are some cities',
                           u'Floats': u'float data'}
            tm.assert_dict_equal(vl, vl_expected)

            assert rdr.data_label == u'This is a  Ünicode data label' 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:31,代码来源:test_stata.py

示例13: test_get_level_lengths

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_get_level_lengths(self):
        index = pd.MultiIndex.from_product([['a', 'b'], [0, 1, 2]])
        expected = {(0, 0): 3, (0, 3): 3, (1, 0): 1, (1, 1): 1, (1, 2): 1,
                    (1, 3): 1, (1, 4): 1, (1, 5): 1}
        result = _get_level_lengths(index)
        tm.assert_dict_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:8,代码来源:test_style.py

示例14: test_get_level_lengths_un_sorted

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_get_level_lengths_un_sorted(self):
        index = pd.MultiIndex.from_arrays([
            [1, 1, 2, 1],
            ['a', 'b', 'b', 'd']
        ])
        expected = {(0, 0): 2, (0, 2): 1, (0, 3): 1,
                    (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1}
        result = _get_level_lengths(index)
        tm.assert_dict_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:11,代码来源:test_style.py

示例15: test_na_values_dict_aliasing

# 需要导入模块: from pandas.util import testing [as 别名]
# 或者: from pandas.util.testing import assert_dict_equal [as 别名]
def test_na_values_dict_aliasing(all_parsers):
    parser = all_parsers
    na_values = {"a": 2, "b": 1}
    na_values_copy = na_values.copy()

    names = ["a", "b"]
    data = "1,2\n2,1"

    expected = DataFrame([[1.0, 2.0], [np.nan, np.nan]], columns=names)
    result = parser.read_csv(StringIO(data), names=names, na_values=na_values)

    tm.assert_frame_equal(result, expected)
    tm.assert_dict_equal(na_values, na_values_copy) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:15,代码来源:test_na_values.py


注:本文中的pandas.util.testing.assert_dict_equal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。