本文整理汇总了Python中pandas.tseries.frequencies.get_period_alias方法的典型用法代码示例。如果您正苦于以下问题:Python frequencies.get_period_alias方法的具体用法?Python frequencies.get_period_alias怎么用?Python frequencies.get_period_alias使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.tseries.frequencies
的用法示例。
在下文中一共展示了frequencies.get_period_alias方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_freq
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, 'freq', None)
if freq is None:
freq = getattr(series.index, 'inferred_freq', None)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
return freq, ax_freq
示例2: _get_freq
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, 'freq', None)
if freq is None:
freq = getattr(series.index, 'inferred_freq', None)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = frequencies.get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
return freq, ax_freq
示例3: _get_freq
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, 'freq', None)
if freq is None:
freq = getattr(series.index, 'inferred_freq', None)
ax_freq = getattr(ax, 'freq', None)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = frequencies.get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
return freq
示例4: _use_dynamic_x
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _use_dynamic_x(ax, data):
freq = _get_index_freq(data)
ax_freq = _get_ax_freq(ax)
if freq is None: # convert irregular if axes has freq info
freq = ax_freq
else: # do not use tsplot if irregular was plotted first
if (ax_freq is None) and (len(ax.get_lines()) > 0):
return False
if freq is None:
return False
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
if freq is None:
return False
# hack this for 0.10.1, creating more technical debt...sigh
if isinstance(data.index, ABCDatetimeIndex):
base = get_freq(freq)
x = data.index
if (base <= FreqGroup.FR_DAY):
return x[:1].is_normalized
return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0]
return True
示例5: _maybe_convert_index
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _maybe_convert_index(ax, data):
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
if isinstance(data.index, ABCDatetimeIndex):
freq = getattr(data.index, 'freq', None)
if freq is None:
freq = getattr(data.index, 'inferred_freq', None)
if isinstance(freq, DateOffset):
freq = freq.rule_code
if freq is None:
freq = _get_ax_freq(ax)
if freq is None:
raise ValueError('Could not get frequency alias for plotting')
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
data = data.to_period(freq=freq)
return data
# Patch methods for subplot. Only format_dateaxis is currently used.
# Do we need the rest for convenience?
示例6: _use_dynamic_x
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _use_dynamic_x(ax, data):
freq = _get_index_freq(data)
ax_freq = _get_ax_freq(ax)
if freq is None: # convert irregular if axes has freq info
freq = ax_freq
else: # do not use tsplot if irregular was plotted first
if (ax_freq is None) and (len(ax.get_lines()) > 0):
return False
if freq is None:
return False
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = frequencies.get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
if freq is None:
return False
# hack this for 0.10.1, creating more technical debt...sigh
if isinstance(data.index, DatetimeIndex):
base = frequencies.get_freq(freq)
x = data.index
if (base <= frequencies.FreqGroup.FR_DAY):
return x[:1].is_normalized
return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0]
return True
示例7: _maybe_convert_index
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _maybe_convert_index(ax, data):
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
if isinstance(data.index, DatetimeIndex):
freq = getattr(data.index, 'freq', None)
if freq is None:
freq = getattr(data.index, 'inferred_freq', None)
if isinstance(freq, DateOffset):
freq = freq.rule_code
if freq is None:
freq = _get_ax_freq(ax)
if freq is None:
raise ValueError('Could not get frequency alias for plotting')
freq = frequencies.get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
data = data.to_period(freq=freq)
return data
# Patch methods for subplot. Only format_dateaxis is currently used.
# Do we need the rest for convenience?
示例8: _is_dynamic_freq
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _is_dynamic_freq(self, freq):
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = get_base_alias(freq)
freq = get_period_alias(freq)
return freq is not None and self._no_base(freq)
示例9: _maybe_convert_index
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def _maybe_convert_index(self, data):
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
from pandas.core.frame import DataFrame
if (isinstance(data.index, DatetimeIndex) and
isinstance(data, DataFrame)):
freq = getattr(data.index, 'freq', None)
if freq is None:
freq = getattr(data.index, 'inferred_freq', None)
if isinstance(freq, DateOffset):
freq = freq.rule_code
freq = get_base_alias(freq)
freq = get_period_alias(freq)
if freq is None:
ax = self._get_ax(0)
freq = getattr(ax, 'freq', None)
if freq is None:
raise ValueError('Could not get frequency alias for plotting')
data = DataFrame(data.values,
index=data.index.to_period(freq=freq),
columns=data.columns)
return data
示例10: to_period
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def to_period(self, freq=None):
"""
Cast to PeriodArray/Index at a particular frequency.
Converts DatetimeArray/Index to PeriodArray/Index.
Parameters
----------
freq : string or Offset, optional
One of pandas' :ref:`offset strings <timeseries.offset_aliases>`
or an Offset object. Will be inferred by default.
Returns
-------
PeriodArray/Index
Raises
------
ValueError
When converting a DatetimeArray/Index with non-regular values,
so that a frequency cannot be inferred.
See Also
--------
PeriodIndex: Immutable ndarray holding ordinal values.
DatetimeIndex.to_pydatetime: Return DatetimeIndex as object.
Examples
--------
>>> df = pd.DataFrame({"y": [1,2,3]},
... index=pd.to_datetime(["2000-03-31 00:00:00",
... "2000-05-31 00:00:00",
... "2000-08-31 00:00:00"]))
>>> df.index.to_period("M")
PeriodIndex(['2000-03', '2000-05', '2000-08'],
dtype='period[M]', freq='M')
Infer the daily frequency
>>> idx = pd.date_range("2017-01-01", periods=2)
>>> idx.to_period()
PeriodIndex(['2017-01-01', '2017-01-02'],
dtype='period[D]', freq='D')
"""
from pandas.core.arrays import PeriodArray
if self.tz is not None:
warnings.warn("Converting to PeriodArray/Index representation "
"will drop timezone information.", UserWarning)
if freq is None:
freq = self.freqstr or self.inferred_freq
if freq is None:
raise ValueError("You must pass a freq argument as "
"current index has none.")
freq = get_period_alias(freq)
return PeriodArray._from_datetime64(self._data, freq, tz=self.tz)
示例11: to_period
# 需要导入模块: from pandas.tseries import frequencies [as 别名]
# 或者: from pandas.tseries.frequencies import get_period_alias [as 别名]
def to_period(self, freq=None):
"""
Cast to PeriodIndex at a particular frequency.
Converts DatetimeIndex to PeriodIndex.
Parameters
----------
freq : string or Offset, optional
One of pandas' :ref:`offset strings <timeseries.offset_aliases>`
or an Offset object. Will be inferred by default.
Returns
-------
PeriodIndex
Raises
------
ValueError
When converting a DatetimeIndex with non-regular values, so that a
frequency cannot be inferred.
Examples
--------
>>> df = pd.DataFrame({"y": [1,2,3]},
... index=pd.to_datetime(["2000-03-31 00:00:00",
... "2000-05-31 00:00:00",
... "2000-08-31 00:00:00"]))
>>> df.index.to_period("M")
PeriodIndex(['2000-03', '2000-05', '2000-08'],
dtype='period[M]', freq='M')
Infer the daily frequency
>>> idx = pd.date_range("2017-01-01", periods=2)
>>> idx.to_period()
PeriodIndex(['2017-01-01', '2017-01-02'],
dtype='period[D]', freq='D')
See also
--------
pandas.PeriodIndex: Immutable ndarray holding ordinal values
pandas.DatetimeIndex.to_pydatetime: Return DatetimeIndex as object
"""
from pandas.core.indexes.period import PeriodIndex
if freq is None:
freq = self.freqstr or self.inferred_freq
if freq is None:
msg = ("You must pass a freq argument as "
"current index has none.")
raise ValueError(msg)
freq = get_period_alias(freq)
return PeriodIndex(self.values, name=self.name, freq=freq, tz=self.tz)