本文整理汇总了Python中pandas.rolling_min方法的典型用法代码示例。如果您正苦于以下问题:Python pandas.rolling_min方法的具体用法?Python pandas.rolling_min怎么用?Python pandas.rolling_min使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas
的用法示例。
在下文中一共展示了pandas.rolling_min方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getWilliam
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import rolling_min [as 别名]
def getWilliam(close, high, low):
'''
计算威廉指数
:param DataFrame close: 收盘价
:param DataFrame high: 当日最高价
:param DataFrame low: 当日最低价
:return: DataFrame w: 威廉指数
'''
# 取14日来算
n = 14
high = pd.rolling_max(high, n)
high.index = range(high.shape[0])
low = pd.rolling_min(low, n)
low.index = range(low.shape[0])
w = 100 - 100 * (close - low) / (high - low)
w.replace([np.nan, np.inf, -np.inf], 0, inplace=True)
return w
示例2: results
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import rolling_min [as 别名]
def results(self, data_frame):
try:
data_frame[self.value] = pd.rolling_min(data_frame[self.data], self.period)
except KeyError:
data_frame[self.value] = np.nan
示例3: ichimoku
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import rolling_min [as 别名]
def ichimoku(price_objs):
"""
computes the ichimoku cloud for price_objs
"""
dates = [pd.to_datetime(str(obj.created_on)) for obj in price_objs]
prices = [obj.price for obj in price_objs]
d = {'date': dates,
'price': prices}
_prices = pd.DataFrame(d)
# Tenkan-sen (Conversion Line): (9-period high + 9-period low)/2))
period9_high = pd.rolling_max(_prices['price'], window=9)
period9_low = pd.rolling_min(_prices['price'], window=9)
tenkan_sen = (period9_high + period9_low) / 2
# Kijun-sen (Base Line): (26-period high + 26-period low)/2))
period26_high = pd.rolling_max(_prices['price'], window=26)
period26_low = pd.rolling_min(_prices['price'], window=26)
kijun_sen = (period26_high + period26_low) / 2
# Senkou Span A (Leading Span A): (Conversion Line + Base Line)/2))
senkou_span_a = ((tenkan_sen + kijun_sen) / 2).shift(26)
# Senkou Span B (Leading Span B): (52-period high + 52-period low)/2))
period52_high = pd.rolling_max(_prices['price'], window=52)
period52_low = pd.rolling_min(_prices['price'], window=52)
senkou_span_b = ((period52_high + period52_low) / 2).shift(26)
# The most current closing price plotted 22 time periods behind (optional)
chikou_span = _prices.shift(-22) # 22 according to investopedia
return {
'tenkan_sen': tenkan_sen,
'kijun_sen': kijun_sen,
'senkou_span_a': senkou_span_a,
'senkou_span_b': senkou_span_b,
'chikou_span': chikou_span,
}
示例4: fast_stochastic
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import rolling_min [as 别名]
def fast_stochastic(lowp, highp, closep, period=14, smoothing=3):
""" calculate slow stochastic
Fast stochastic calculation
%K = (Current Close - Lowest Low)/(Highest High - Lowest Low) * 100
%D = 3-day SMA of %K
"""
low_min = pd.rolling_min(lowp, period)
high_max = pd.rolling_max(highp, period)
k_fast = 100 * (closep - low_min)/(high_max - low_min)
k_fast = k_fast.dropna()
d_fast = simple_moving_average(k_fast, smoothing)
return k_fast, d_fast
开发者ID:Roibal,项目名称:Cryptocurrency-Trading-Bots-Python-Beginner-Advance,代码行数:14,代码来源:Stochastic_Crypto_Pandas_Stock.py
示例5: getKDJ
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import rolling_min [as 别名]
def getKDJ(close, high, low):
'''
calculate KDJ value
:param DataFrame close:close price
:param DataFrame high:highest price of a day
:param DataFrame low: lowest price of a day
:return: [DataFrame,DataFrame,DataFrame,DataFrame] [RSV, K, D, KDJ]:KDJ value and some subproducts
'''
# interval over which KDJ is calculated
kdj_interval = 9
N = 3
# calculate RSV
# get the close value to be used
close = pd.DataFrame(close.iloc[(kdj_interval - 1):, :].values)
# calculate maximum in (kdj_interval) days in high value
high_max_in_interval = pd.rolling_max(high, kdj_interval)
# rolling_sum function will set the first (kdj_interval-1) days as np.nan,drop them
high_max_in_interval.dropna(inplace=True)
# set index with 0,1,2...,otherwise it will be kdj_interval,kdj_interval+1,...(may not be explicit but fuck the index)
high_max_in_interval.index = range(high_max_in_interval.shape[0])
low_min_in_interval = pd.rolling_min(low, kdj_interval)
low_min_in_interval.dropna(inplace=True)
low_min_in_interval.index = range(low_min_in_interval.shape[0])
# calculate RSV
RSV = 100 * (close - low_min_in_interval) / (high_max_in_interval - low_min_in_interval)
# replace np.nan and np.inf in RSV because there might be 0 in the denominator of the last formula
RSV.replace([np.nan, np.inf,-np.inf], 0, inplace=True)
# get matrix shape
[row, col] = RSV.shape
# calculate K
# assuming N equals n in the formula
# initialize both N and K with 50
K = pd.DataFrame(np.zeros([row, col]))
D = pd.DataFrame(np.zeros([row, col]))
K.iloc[0, :] = 50 * np.ones([1, col])
D.iloc[0, :] = 50 * np.ones([1, col])
# calculate K and D iteratively
for i in range(1, row):
K.iloc[i, :] = (RSV.iloc[i, :] + K.iloc[(i - 1), :]) / N
D.iloc[i, :] = (K.iloc[i, :] - D.iloc[(i - 1), :]) / N
KDJ = 3 * K - 2 * D
return [RSV, K, D, KDJ]