当前位置: 首页>>代码示例>>Python>>正文


Python Series.sort_values方法代码示例

本文整理汇总了Python中pandas.core.series.Series.sort_values方法的典型用法代码示例。如果您正苦于以下问题:Python Series.sort_values方法的具体用法?Python Series.sort_values怎么用?Python Series.sort_values使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.core.series.Series的用法示例。


在下文中一共展示了Series.sort_values方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: argsort

# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def argsort(self, ascending=True, kind='quicksort', *args, **kwargs):
        """
        Returns the indices that would sort the Categorical instance if
        'sort_values' was called. This function is implemented to provide
        compatibility with numpy ndarray objects.

        While an ordering is applied to the category values, arg-sorting
        in this context refers more to organizing and grouping together
        based on matching category values. Thus, this function can be
        called on an unordered Categorical instance unlike the functions
        'Categorical.min' and 'Categorical.max'.

        Returns
        -------
        argsorted : numpy array

        See also
        --------
        numpy.ndarray.argsort
        """
        ascending = nv.validate_argsort_with_ascending(ascending, args, kwargs)
        result = np.argsort(self._codes.copy(), kind=kind, **kwargs)
        if not ascending:
            result = result[::-1]
        return result 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:27,代码来源:categorical.py

示例2: _from_inferred_categories

# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
                                  dtype, true_values=None):
        """
        Construct a Categorical from inferred values.

        For inferred categories (`dtype` is None) the categories are sorted.
        For explicit `dtype`, the `inferred_categories` are cast to the
        appropriate type.

        Parameters
        ----------
        inferred_categories : Index
        inferred_codes : Index
        dtype : CategoricalDtype or 'category'
        true_values : list, optional
            If none are provided, the default ones are
            "True", "TRUE", and "true."

        Returns
        -------
        Categorical
        """
        from pandas import Index, to_numeric, to_datetime, to_timedelta

        cats = Index(inferred_categories)
        known_categories = (isinstance(dtype, CategoricalDtype) and
                            dtype.categories is not None)

        if known_categories:
            # Convert to a specialized type with `dtype` if specified.
            if dtype.categories.is_numeric():
                cats = to_numeric(inferred_categories, errors="coerce")
            elif is_datetime64_dtype(dtype.categories):
                cats = to_datetime(inferred_categories, errors="coerce")
            elif is_timedelta64_dtype(dtype.categories):
                cats = to_timedelta(inferred_categories, errors="coerce")
            elif dtype.categories.is_boolean():
                if true_values is None:
                    true_values = ["True", "TRUE", "true"]

                cats = cats.isin(true_values)

        if known_categories:
            # Recode from observation order to dtype.categories order.
            categories = dtype.categories
            codes = _recode_for_categories(inferred_codes, cats, categories)
        elif not cats.is_monotonic_increasing:
            # Sort categories and recode for unknown categories.
            unsorted = cats.copy()
            categories = cats.sort_values()

            codes = _recode_for_categories(inferred_codes, unsorted,
                                           categories)
            dtype = CategoricalDtype(categories, ordered=False)
        else:
            dtype = CategoricalDtype(cats, ordered=False)
            codes = inferred_codes

        return cls(codes, dtype=dtype, fastpath=True) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:61,代码来源:categorical.py

示例3: _from_inferred_categories

# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
                                  dtype):
        """Construct a Categorical from inferred values

        For inferred categories (`dtype` is None) the categories are sorted.
        For explicit `dtype`, the `inferred_categories` are cast to the
        appropriate type.

        Parameters
        ----------

        inferred_categories : Index
        inferred_codes : Index
        dtype : CategoricalDtype or 'category'

        Returns
        -------
        Categorical
        """
        from pandas import Index, to_numeric, to_datetime, to_timedelta

        cats = Index(inferred_categories)

        known_categories = (isinstance(dtype, CategoricalDtype) and
                            dtype.categories is not None)

        if known_categories:
            # Convert to a specialzed type with `dtype` if specified
            if dtype.categories.is_numeric():
                cats = to_numeric(inferred_categories, errors='coerce')
            elif is_datetime64_dtype(dtype.categories):
                cats = to_datetime(inferred_categories, errors='coerce')
            elif is_timedelta64_dtype(dtype.categories):
                cats = to_timedelta(inferred_categories, errors='coerce')

        if known_categories:
            # recode from observation order to dtype.categories order
            categories = dtype.categories
            codes = _recode_for_categories(inferred_codes, cats, categories)
        elif not cats.is_monotonic_increasing:
            # sort categories and recode for unknown categories
            unsorted = cats.copy()
            categories = cats.sort_values()
            codes = _recode_for_categories(inferred_codes, unsorted,
                                           categories)
            dtype = CategoricalDtype(categories, ordered=False)
        else:
            dtype = CategoricalDtype(cats, ordered=False)
            codes = inferred_codes

        return cls(codes, dtype=dtype, fastpath=True) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:53,代码来源:categorical.py

示例4: _from_inferred_categories

# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
                                  dtype):
        """Construct a Categorical from inferred values

        For inferred categories (`dtype` is None) the categories are sorted.
        For explicit `dtype`, the `inferred_categories` are cast to the
        appropriate type.

        Parameters
        ----------

        inferred_categories : Index
        inferred_codes : Index
        dtype : CategoricalDtype or 'category'

        Returns
        -------
        Categorical
        """
        from pandas import Index, to_numeric, to_datetime, to_timedelta

        cats = Index(inferred_categories)

        known_categories = (isinstance(dtype, CategoricalDtype) and
                            dtype.categories is not None)

        if known_categories:
            # Convert to a specialzed type with `dtype` if specified
            if dtype.categories.is_numeric():
                cats = to_numeric(inferred_categories, errors='coerce')
            elif is_datetime64_dtype(dtype.categories):
                cats = to_datetime(inferred_categories, errors='coerce')
            elif is_timedelta64_dtype(dtype.categories):
                cats = to_timedelta(inferred_categories, errors='coerce')

        if known_categories:
            # recode from observation oder to dtype.categories order
            categories = dtype.categories
            codes = _recode_for_categories(inferred_codes, cats, categories)
        elif not cats.is_monotonic_increasing:
            # sort categories and recode for unknown categories
            unsorted = cats.copy()
            categories = cats.sort_values()
            codes = _recode_for_categories(inferred_codes, unsorted,
                                           categories)
            dtype = CategoricalDtype(categories, ordered=False)
        else:
            dtype = CategoricalDtype(cats, ordered=False)
            codes = inferred_codes

        return cls(codes, dtype=dtype, fastpath=True) 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:53,代码来源:categorical.py


注:本文中的pandas.core.series.Series.sort_values方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。