本文整理汇总了Python中pandas.core.series.Series.sort_values方法的典型用法代码示例。如果您正苦于以下问题:Python Series.sort_values方法的具体用法?Python Series.sort_values怎么用?Python Series.sort_values使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.series.Series
的用法示例。
在下文中一共展示了Series.sort_values方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: argsort
# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def argsort(self, ascending=True, kind='quicksort', *args, **kwargs):
"""
Returns the indices that would sort the Categorical instance if
'sort_values' was called. This function is implemented to provide
compatibility with numpy ndarray objects.
While an ordering is applied to the category values, arg-sorting
in this context refers more to organizing and grouping together
based on matching category values. Thus, this function can be
called on an unordered Categorical instance unlike the functions
'Categorical.min' and 'Categorical.max'.
Returns
-------
argsorted : numpy array
See also
--------
numpy.ndarray.argsort
"""
ascending = nv.validate_argsort_with_ascending(ascending, args, kwargs)
result = np.argsort(self._codes.copy(), kind=kind, **kwargs)
if not ascending:
result = result[::-1]
return result
示例2: _from_inferred_categories
# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
dtype, true_values=None):
"""
Construct a Categorical from inferred values.
For inferred categories (`dtype` is None) the categories are sorted.
For explicit `dtype`, the `inferred_categories` are cast to the
appropriate type.
Parameters
----------
inferred_categories : Index
inferred_codes : Index
dtype : CategoricalDtype or 'category'
true_values : list, optional
If none are provided, the default ones are
"True", "TRUE", and "true."
Returns
-------
Categorical
"""
from pandas import Index, to_numeric, to_datetime, to_timedelta
cats = Index(inferred_categories)
known_categories = (isinstance(dtype, CategoricalDtype) and
dtype.categories is not None)
if known_categories:
# Convert to a specialized type with `dtype` if specified.
if dtype.categories.is_numeric():
cats = to_numeric(inferred_categories, errors="coerce")
elif is_datetime64_dtype(dtype.categories):
cats = to_datetime(inferred_categories, errors="coerce")
elif is_timedelta64_dtype(dtype.categories):
cats = to_timedelta(inferred_categories, errors="coerce")
elif dtype.categories.is_boolean():
if true_values is None:
true_values = ["True", "TRUE", "true"]
cats = cats.isin(true_values)
if known_categories:
# Recode from observation order to dtype.categories order.
categories = dtype.categories
codes = _recode_for_categories(inferred_codes, cats, categories)
elif not cats.is_monotonic_increasing:
# Sort categories and recode for unknown categories.
unsorted = cats.copy()
categories = cats.sort_values()
codes = _recode_for_categories(inferred_codes, unsorted,
categories)
dtype = CategoricalDtype(categories, ordered=False)
else:
dtype = CategoricalDtype(cats, ordered=False)
codes = inferred_codes
return cls(codes, dtype=dtype, fastpath=True)
示例3: _from_inferred_categories
# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
dtype):
"""Construct a Categorical from inferred values
For inferred categories (`dtype` is None) the categories are sorted.
For explicit `dtype`, the `inferred_categories` are cast to the
appropriate type.
Parameters
----------
inferred_categories : Index
inferred_codes : Index
dtype : CategoricalDtype or 'category'
Returns
-------
Categorical
"""
from pandas import Index, to_numeric, to_datetime, to_timedelta
cats = Index(inferred_categories)
known_categories = (isinstance(dtype, CategoricalDtype) and
dtype.categories is not None)
if known_categories:
# Convert to a specialzed type with `dtype` if specified
if dtype.categories.is_numeric():
cats = to_numeric(inferred_categories, errors='coerce')
elif is_datetime64_dtype(dtype.categories):
cats = to_datetime(inferred_categories, errors='coerce')
elif is_timedelta64_dtype(dtype.categories):
cats = to_timedelta(inferred_categories, errors='coerce')
if known_categories:
# recode from observation order to dtype.categories order
categories = dtype.categories
codes = _recode_for_categories(inferred_codes, cats, categories)
elif not cats.is_monotonic_increasing:
# sort categories and recode for unknown categories
unsorted = cats.copy()
categories = cats.sort_values()
codes = _recode_for_categories(inferred_codes, unsorted,
categories)
dtype = CategoricalDtype(categories, ordered=False)
else:
dtype = CategoricalDtype(cats, ordered=False)
codes = inferred_codes
return cls(codes, dtype=dtype, fastpath=True)
示例4: _from_inferred_categories
# 需要导入模块: from pandas.core.series import Series [as 别名]
# 或者: from pandas.core.series.Series import sort_values [as 别名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
dtype):
"""Construct a Categorical from inferred values
For inferred categories (`dtype` is None) the categories are sorted.
For explicit `dtype`, the `inferred_categories` are cast to the
appropriate type.
Parameters
----------
inferred_categories : Index
inferred_codes : Index
dtype : CategoricalDtype or 'category'
Returns
-------
Categorical
"""
from pandas import Index, to_numeric, to_datetime, to_timedelta
cats = Index(inferred_categories)
known_categories = (isinstance(dtype, CategoricalDtype) and
dtype.categories is not None)
if known_categories:
# Convert to a specialzed type with `dtype` if specified
if dtype.categories.is_numeric():
cats = to_numeric(inferred_categories, errors='coerce')
elif is_datetime64_dtype(dtype.categories):
cats = to_datetime(inferred_categories, errors='coerce')
elif is_timedelta64_dtype(dtype.categories):
cats = to_timedelta(inferred_categories, errors='coerce')
if known_categories:
# recode from observation oder to dtype.categories order
categories = dtype.categories
codes = _recode_for_categories(inferred_codes, cats, categories)
elif not cats.is_monotonic_increasing:
# sort categories and recode for unknown categories
unsorted = cats.copy()
categories = cats.sort_values()
codes = _recode_for_categories(inferred_codes, unsorted,
categories)
dtype = CategoricalDtype(categories, ordered=False)
else:
dtype = CategoricalDtype(cats, ordered=False)
codes = inferred_codes
return cls(codes, dtype=dtype, fastpath=True)