本文整理汇总了Python中pandas.core.reshape.util.cartesian_product方法的典型用法代码示例。如果您正苦于以下问题:Python util.cartesian_product方法的具体用法?Python util.cartesian_product怎么用?Python util.cartesian_product使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.reshape.util
的用法示例。
在下文中一共展示了util.cartesian_product方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setup_method
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def setup_method(self, method):
import scipy.sparse
# SparseSeries inputs used in tests, the tests rely on the order
self.sparse_series = []
s = pd.Series([3.0, nan, 1.0, 2.0, nan, nan])
s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
(1, 2, 'a', 1),
(1, 1, 'b', 0),
(1, 1, 'b', 1),
(2, 1, 'b', 0),
(2, 1, 'b', 1)],
names=['A', 'B', 'C', 'D'])
self.sparse_series.append(s.to_sparse())
ss = self.sparse_series[0].copy()
ss.index.names = [3, 0, 1, 2]
self.sparse_series.append(ss)
ss = pd.Series([
nan
] * 12, index=cartesian_product((range(3), range(4)))).to_sparse()
for k, v in zip([(0, 0), (1, 2), (1, 3)], [3.0, 1.0, 2.0]):
ss[k] = v
self.sparse_series.append(ss)
# results used in tests
self.coo_matrices = []
self.coo_matrices.append(scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([0, 1, 1], [0, 2, 3])), shape=(3, 4)))
self.coo_matrices.append(scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)))
self.coo_matrices.append(scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([0, 1, 1], [0, 0, 1])), shape=(3, 2)))
self.ils = [[(1, 2), (1, 1), (2, 1)], [(1, 1), (1, 2), (2, 1)],
[(1, 2, 'a'), (1, 1, 'b'), (2, 1, 'b')]]
self.jls = [[('a', 0), ('a', 1), ('b', 0), ('b', 1)], [0, 1]]
示例2: test_simple
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def test_simple(self):
x, y = list('ABC'), [1, 22]
result1, result2 = cartesian_product([x, y])
expected1 = np.array(['A', 'A', 'B', 'B', 'C', 'C'])
expected2 = np.array([1, 22, 1, 22, 1, 22])
tm.assert_numpy_array_equal(result1, expected1)
tm.assert_numpy_array_equal(result2, expected2)
示例3: test_datetimeindex
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def test_datetimeindex(self):
# regression test for GitHub issue #6439
# make sure that the ordering on datetimeindex is consistent
x = date_range('2000-01-01', periods=2)
result1, result2 = [Index(y).day for y in cartesian_product([x, x])]
expected1 = Index([1, 1, 2, 2])
expected2 = Index([1, 2, 1, 2])
tm.assert_index_equal(result1, expected1)
tm.assert_index_equal(result2, expected2)
示例4: test_empty
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def test_empty(self):
# product of empty factors
X = [[], [0, 1], []]
Y = [[], [], ['a', 'b', 'c']]
for x, y in zip(X, Y):
expected1 = np.array([], dtype=np.asarray(x).dtype)
expected2 = np.array([], dtype=np.asarray(y).dtype)
result1, result2 = cartesian_product([x, y])
tm.assert_numpy_array_equal(result1, expected1)
tm.assert_numpy_array_equal(result2, expected2)
# empty product (empty input):
result = cartesian_product([])
expected = []
assert result == expected
示例5: test_invalid_input
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def test_invalid_input(self, X):
msg = "Input must be a list-like of list-likes"
with pytest.raises(TypeError, match=msg):
cartesian_product(X=X)
示例6: test_invalid_input
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def test_invalid_input(self):
invalid_inputs = [1, [1], [1, 2], [[1], 2],
'a', ['a'], ['a', 'b'], [['a'], 'b']]
msg = "Input must be a list-like of list-likes"
for X in invalid_inputs:
tm.assert_raises_regex(TypeError, msg, cartesian_product, X=X)
示例7: from_product
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def from_product(cls, iterables, sortorder=None, names=None):
"""
Make a MultiIndex from the cartesian product of multiple iterables
Parameters
----------
iterables : list / sequence of iterables
Each iterable has unique labels for each level of the index.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of strings or None
Names for the levels in the index.
Returns
-------
index : MultiIndex
Examples
--------
>>> numbers = [0, 1, 2]
>>> colors = [u'green', u'purple']
>>> MultiIndex.from_product([numbers, colors],
names=['number', 'color'])
MultiIndex(levels=[[0, 1, 2], [u'green', u'purple']],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=[u'number', u'color'])
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex
MultiIndex.from_tuples : Convert list of tuples to MultiIndex
"""
from pandas.core.categorical import _factorize_from_iterables
from pandas.core.reshape.util import cartesian_product
labels, levels = _factorize_from_iterables(iterables)
labels = cartesian_product(labels)
return MultiIndex(levels, labels, sortorder=sortorder, names=names)
示例8: setup_method
# 需要导入模块: from pandas.core.reshape import util [as 别名]
# 或者: from pandas.core.reshape.util import cartesian_product [as 别名]
def setup_method(self, method):
tm._skip_if_no_scipy()
import scipy.sparse
# SparseSeries inputs used in tests, the tests rely on the order
self.sparse_series = []
s = pd.Series([3.0, nan, 1.0, 2.0, nan, nan])
s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
(1, 2, 'a', 1),
(1, 1, 'b', 0),
(1, 1, 'b', 1),
(2, 1, 'b', 0),
(2, 1, 'b', 1)],
names=['A', 'B', 'C', 'D'])
self.sparse_series.append(s.to_sparse())
ss = self.sparse_series[0].copy()
ss.index.names = [3, 0, 1, 2]
self.sparse_series.append(ss)
ss = pd.Series([
nan
] * 12, index=cartesian_product((range(3), range(4)))).to_sparse()
for k, v in zip([(0, 0), (1, 2), (1, 3)], [3.0, 1.0, 2.0]):
ss[k] = v
self.sparse_series.append(ss)
# results used in tests
self.coo_matrices = []
self.coo_matrices.append(scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([0, 1, 1], [0, 2, 3])), shape=(3, 4)))
self.coo_matrices.append(scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)))
self.coo_matrices.append(scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([0, 1, 1], [0, 0, 1])), shape=(3, 2)))
self.ils = [[(1, 2), (1, 1), (2, 1)], [(1, 1), (1, 2), (2, 1)],
[(1, 2, 'a'), (1, 1, 'b'), (2, 1, 'b')]]
self.jls = [[('a', 0), ('a', 1), ('b', 0), ('b', 1)], [0, 1]]