当前位置: 首页>>代码示例>>Python>>正文


Python DataFrame.fillna方法代码示例

本文整理汇总了Python中pandas.core.frame.DataFrame.fillna方法的典型用法代码示例。如果您正苦于以下问题:Python DataFrame.fillna方法的具体用法?Python DataFrame.fillna怎么用?Python DataFrame.fillna使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.core.frame.DataFrame的用法示例。


在下文中一共展示了DataFrame.fillna方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pad

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def pad(self, limit=None):
        """
        Forward fill the values.

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.pad
        DataFrame.pad
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('ffill', limit=limit) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:19,代码来源:groupby.py

示例2: backfill

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def backfill(self, limit=None):
        """
        Backward fill the values.

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.backfill
        DataFrame.backfill
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('bfill', limit=limit) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:19,代码来源:groupby.py

示例3: pad

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def pad(self, limit=None):
        """
        Forward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.pad
        DataFrame.pad
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('ffill', limit=limit) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:19,代码来源:groupby.py

示例4: backfill

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def backfill(self, limit=None):
        """
        Backward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.backfill
        DataFrame.backfill
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('bfill', limit=limit) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:19,代码来源:groupby.py

示例5: _transform_fast

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def _transform_fast(self, result, obj):
        """
        Fast transform path for aggregations
        """
        # if there were groups with no observations (Categorical only?)
        # try casting data to original dtype
        cast = (self.size().fillna(0) > 0).any()

        # for each col, reshape to to size of original frame
        # by take operation
        ids, _, ngroup = self.grouper.group_info
        output = []
        for i, _ in enumerate(result.columns):
            res = algorithms.take_1d(result.iloc[:, i].values, ids)
            if cast:
                res = self._try_cast(res, obj.iloc[:, i])
            output.append(res)

        return DataFrame._from_arrays(output, columns=result.columns,
                                      index=obj.index) 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:22,代码来源:groupby.py

示例6: _transform_should_cast

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def _transform_should_cast(self, func_nm):
        """
        Parameters:
        -----------
        func_nm: str
            The name of the aggregation function being performed

        Returns:
        --------
        bool
            Whether transform should attempt to cast the result of aggregation
        """
        return (self.size().fillna(0) > 0).any() and (
            func_nm not in base.cython_cast_blacklist) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:16,代码来源:groupby.py

示例7: _transform_should_cast

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def _transform_should_cast(self, func_nm):
        """
        Parameters:
        -----------
        func_nm: str
            The name of the aggregation function being performed

        Returns:
        --------
        bool
            Whether transform should attempt to cast the result of aggregation
        """
        return (self.size().fillna(0) > 0).any() and (func_nm not in
                                                      _cython_cast_blacklist) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:16,代码来源:groupby.py

示例8: pad

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def pad(self, limit=None):
        """
        Forward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.fillna
        DataFrame.fillna
        """
        return self.apply(lambda x: x.ffill(limit=limit)) 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:17,代码来源:groupby.py

示例9: backfill

# 需要导入模块: from pandas.core.frame import DataFrame [as 别名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 别名]
def backfill(self, limit=None):
        """
        Backward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.fillna
        DataFrame.fillna
        """
        return self.apply(lambda x: x.bfill(limit=limit)) 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:17,代码来源:groupby.py


注:本文中的pandas.core.frame.DataFrame.fillna方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。