本文整理汇总了Python中pandas.core.dtypes.generic.ABCSeries方法的典型用法代码示例。如果您正苦于以下问题:Python generic.ABCSeries方法的具体用法?Python generic.ABCSeries怎么用?Python generic.ABCSeries使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.dtypes.generic
的用法示例。
在下文中一共展示了generic.ABCSeries方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _stack_arrays
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _stack_arrays(tuples, dtype):
# fml
def _asarray_compat(x):
if isinstance(x, ABCSeries):
return x._values
else:
return np.asarray(x)
def _shape_compat(x):
if isinstance(x, ABCSeries):
return len(x),
else:
return x.shape
placement, names, arrays = zip(*tuples)
first = arrays[0]
shape = (len(arrays),) + _shape_compat(first)
stacked = np.empty(shape, dtype=dtype)
for i, arr in enumerate(arrays):
stacked[i] = _asarray_compat(arr)
return stacked, placement
示例2: _create_arithmetic_method
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _create_arithmetic_method(cls, op):
def arithmetic_method(self, other):
if isinstance(other, (ABCIndexClass, ABCSeries)):
return NotImplemented
elif isinstance(other, cls):
other = other._ndarray
with np.errstate(all="ignore"):
result = op(self._ndarray, other)
if op is divmod:
a, b = result
return cls(a), cls(b)
return cls(result)
return compat.set_function_name(arithmetic_method,
"__{}__".format(op.__name__),
cls)
示例3: _create_comparison_method
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _create_comparison_method(cls, op):
"""
Create a comparison method that dispatches to ``cls.values``.
"""
def wrapper(self, other):
if isinstance(other, ABCSeries):
# the arrays defer to Series for comparison ops but the indexes
# don't, so we have to unwrap here.
other = other._values
result = op(self._data, maybe_unwrap_index(other))
return result
wrapper.__doc__ = op.__doc__
wrapper.__name__ = '__{}__'.format(op.__name__)
return wrapper
示例4: _join_i8_wrapper
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _join_i8_wrapper(joinf, dtype, with_indexers=True):
"""
Create the join wrapper methods.
"""
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
@staticmethod
def wrapper(left, right):
if isinstance(left, (np.ndarray, ABCIndex, ABCSeries,
DatetimeLikeArrayMixin)):
left = left.view('i8')
if isinstance(right, (np.ndarray, ABCIndex, ABCSeries,
DatetimeLikeArrayMixin)):
right = right.view('i8')
results = joinf(left, right)
if with_indexers:
join_index, left_indexer, right_indexer = results
join_index = join_index.view(dtype)
return join_index, left_indexer, right_indexer
return results
return wrapper
示例5: wrap_results_for_axis
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def wrap_results_for_axis(self):
""" return the results for the rows """
results = self.results
result = self.obj._constructor(data=results)
if not isinstance(results[0], ABCSeries):
try:
result.index = self.res_columns
except ValueError:
pass
try:
result.columns = self.res_index
except ValueError:
pass
return result
示例6: __getitem__
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def __getitem__(self, key):
if self._selection is not None:
raise IndexError('Column(s) {selection} already selected'
.format(selection=self._selection))
if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass,
np.ndarray)):
if len(self.obj.columns.intersection(key)) != len(key):
bad_keys = list(set(key).difference(self.obj.columns))
raise KeyError("Columns not found: {missing}"
.format(missing=str(bad_keys)[1:-1]))
return self._gotitem(list(key), ndim=2)
elif not getattr(self, 'as_index', False):
if key not in self.obj.columns:
raise KeyError("Column not found: {key}".format(key=key))
return self._gotitem(key, ndim=2)
else:
if key not in self.obj:
raise KeyError("Column not found: {key}".format(key=key))
return self._gotitem(key, ndim=1)
示例7: check_bool_indexer
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def check_bool_indexer(ax, key):
# boolean indexing, need to check that the data are aligned, otherwise
# disallowed
# this function assumes that is_bool_indexer(key) == True
result = key
if isinstance(key, ABCSeries) and not key.index.equals(ax):
result = result.reindex(ax)
mask = isna(result._values)
if mask.any():
raise IndexingError('Unalignable boolean Series provided as '
'indexer (index of the boolean Series and of '
'the indexed object do not match')
result = result.astype(bool)._values
elif is_sparse(result):
result = result.to_dense()
result = np.asarray(result, dtype=bool)
else:
# is_bool_indexer has already checked for nulls in the case of an
# object array key, so no check needed here
result = np.asarray(result, dtype=bool)
return result
示例8: _get_rename_function
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _get_rename_function(mapper):
"""
Returns a function that will map names/labels, dependent if mapper
is a dict, Series or just a function.
"""
if isinstance(mapper, (compat.Mapping, ABCSeries)):
def f(x):
if x in mapper:
return mapper[x]
else:
return x
else:
f = mapper
return f
示例9: _evaluate_with_timedelta_like
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _evaluate_with_timedelta_like(self, other, op):
if isinstance(other, ABCSeries):
# GH#19042
return NotImplemented
opstr = '__{opname}__'.format(opname=op.__name__).replace('__r', '__')
# allow division by a timedelta
if opstr in ['__div__', '__truediv__', '__floordiv__']:
if _is_convertible_to_td(other):
other = Timedelta(other)
if isna(other):
raise NotImplementedError(
"division by pd.NaT not implemented")
i8 = self.asi8
left, right = i8, other.value
if opstr in ['__floordiv__']:
result = op(left, right)
else:
result = op(left, np.float64(right))
result = self._maybe_mask_results(result, convert='float64')
return Index(result, name=self.name, copy=False)
return NotImplemented
示例10: __getitem__
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def __getitem__(self, key):
if self._selection is not None:
raise Exception('Column(s) {selection} already selected'
.format(selection=self._selection))
if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass,
np.ndarray)):
if len(self.obj.columns.intersection(key)) != len(key):
bad_keys = list(set(key).difference(self.obj.columns))
raise KeyError("Columns not found: {missing}"
.format(missing=str(bad_keys)[1:-1]))
return self._gotitem(list(key), ndim=2)
elif not getattr(self, 'as_index', False):
if key not in self.obj.columns:
raise KeyError("Column not found: {key}".format(key=key))
return self._gotitem(key, ndim=2)
else:
if key not in self.obj:
raise KeyError("Column not found: {key}".format(key=key))
return self._gotitem(key, ndim=1)
示例11: is_bool_indexer
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def is_bool_indexer(key):
if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)):
if key.dtype == np.object_:
key = np.asarray(_values_from_object(key))
if not lib.is_bool_array(key):
if isna(key).any():
raise ValueError('cannot index with vector containing '
'NA / NaN values')
return False
return True
elif key.dtype == np.bool_:
return True
elif isinstance(key, list):
try:
arr = np.asarray(key)
return arr.dtype == np.bool_ and len(arr) == len(key)
except TypeError: # pragma: no cover
return False
return False
示例12: _dt_to_float_ordinal
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _dt_to_float_ordinal(dt):
"""
Convert :mod:`datetime` to the Gregorian date as UTC float days,
preserving hours, minutes, seconds and microseconds. Return value
is a :func:`float`.
"""
if (isinstance(dt, (np.ndarray, Index, ABCSeries)
) and is_datetime64_ns_dtype(dt)):
base = dates.epoch2num(dt.asi8 / 1.0E9)
else:
base = dates.date2num(dt)
return base
# Datetime Conversion
示例13: _convert_1d
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def _convert_1d(values, unit, axis):
def try_parse(values):
try:
return _dt_to_float_ordinal(tools.to_datetime(values))
except Exception:
return values
if isinstance(values, (datetime, pydt.date)):
return _dt_to_float_ordinal(values)
elif isinstance(values, np.datetime64):
return _dt_to_float_ordinal(tslibs.Timestamp(values))
elif isinstance(values, pydt.time):
return dates.date2num(values)
elif (is_integer(values) or is_float(values)):
return values
elif isinstance(values, compat.string_types):
return try_parse(values)
elif isinstance(values, (list, tuple, np.ndarray, Index, ABCSeries)):
if isinstance(values, ABCSeries):
# https://github.com/matplotlib/matplotlib/issues/11391
# Series was skipped. Convert to DatetimeIndex to get asi8
values = Index(values)
if isinstance(values, Index):
values = values.values
if not isinstance(values, np.ndarray):
values = com.asarray_tuplesafe(values)
if is_integer_dtype(values) or is_float_dtype(values):
return values
try:
values = tools.to_datetime(values)
if isinstance(values, Index):
values = _dt_to_float_ordinal(values)
else:
values = [_dt_to_float_ordinal(x) for x in values]
except Exception:
values = _dt_to_float_ordinal(values)
return values
示例14: table
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table
Parameters
----------
ax : Matplotlib axes object
data : DataFrame or Series
data for table contents
kwargs : keywords, optional
keyword arguments which passed to matplotlib.table.table.
If `rowLabels` or `colLabels` is not specified, data index or column
name will be used.
Returns
-------
matplotlib table object
"""
if isinstance(data, ABCSeries):
data = data.to_frame()
elif isinstance(data, ABCDataFrame):
pass
else:
raise ValueError('Input data must be DataFrame or Series')
if rowLabels is None:
rowLabels = data.index
if colLabels is None:
colLabels = data.columns
cellText = data.values
import matplotlib.table
table = matplotlib.table.table(ax, cellText=cellText,
rowLabels=rowLabels,
colLabels=colLabels, **kwargs)
return table
示例15: test_abc_types
# 需要导入模块: from pandas.core.dtypes import generic [as 别名]
# 或者: from pandas.core.dtypes.generic import ABCSeries [as 别名]
def test_abc_types(self):
assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex)
assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index)
assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index)
assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index)
assert isinstance(self.multi_index, gt.ABCMultiIndex)
assert isinstance(self.datetime_index, gt.ABCDatetimeIndex)
assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex)
assert isinstance(self.period_index, gt.ABCPeriodIndex)
assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex)
assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass)
assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass)
assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries)
assert isinstance(self.df, gt.ABCDataFrame)
with catch_warnings(record=True):
simplefilter('ignore', FutureWarning)
assert isinstance(self.df.to_panel(), gt.ABCPanel)
assert isinstance(self.sparse_series, gt.ABCSparseSeries)
assert isinstance(self.sparse_array, gt.ABCSparseArray)
assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame)
assert isinstance(self.categorical, gt.ABCCategorical)
assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod)
assert isinstance(pd.DateOffset(), gt.ABCDateOffset)
assert isinstance(pd.Period('2012', freq='A-DEC').freq,
gt.ABCDateOffset)
assert not isinstance(pd.Period('2012', freq='A-DEC'),
gt.ABCDateOffset)
assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval)
assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)
assert isinstance(self.datetime_array, gt.ABCDatetimeArray)
assert not isinstance(self.datetime_index, gt.ABCDatetimeArray)
assert isinstance(self.timedelta_array, gt.ABCTimedeltaArray)
assert not isinstance(self.timedelta_index, gt.ABCTimedeltaArray)