本文整理汇总了Python中pandas.core.dtypes.common.is_object_dtype方法的典型用法代码示例。如果您正苦于以下问题:Python common.is_object_dtype方法的具体用法?Python common.is_object_dtype怎么用?Python common.is_object_dtype使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.dtypes.common
的用法示例。
在下文中一共展示了common.is_object_dtype方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_different
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_object_dtype [as 别名]
def test_different(self, right_vals):
left = DataFrame({'A': ['foo', 'bar'],
'B': Series(['foo', 'bar']).astype('category'),
'C': [1, 2],
'D': [1.0, 2.0],
'E': Series([1, 2], dtype='uint64'),
'F': Series([1, 2], dtype='int32')})
right = DataFrame({'A': right_vals})
# GH 9780
# We allow merging on object and categorical cols and cast
# categorical cols to object
result = pd.merge(left, right, on='A')
assert is_object_dtype(result.A.dtype)
示例2: test_merge_incompat_dtypes_are_ok
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_object_dtype [as 别名]
def test_merge_incompat_dtypes_are_ok(self, df1_vals, df2_vals):
# these are explicity allowed incompat merges, that pass thru
# the result type is dependent on if the values on the rhs are
# inferred, otherwise these will be coereced to object
df1 = DataFrame({'A': df1_vals})
df2 = DataFrame({'A': df2_vals})
result = pd.merge(df1, df2, on=['A'])
assert is_object_dtype(result.A.dtype)
result = pd.merge(df2, df1, on=['A'])
assert is_object_dtype(result.A.dtype)
示例3: test_is_object
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_object_dtype [as 别名]
def test_is_object():
assert com.is_object_dtype(object)
assert com.is_object_dtype(np.array([], dtype=object))
assert not com.is_object_dtype(int)
assert not com.is_object_dtype(np.array([], dtype=int))
assert not com.is_object_dtype([1, 2, 3])
示例4: _is_numeric
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_object_dtype [as 别名]
def _is_numeric(self):
from pandas.core.dtypes.common import is_object_dtype
return not is_object_dtype(self.subtype)
示例5: test_different
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_object_dtype [as 别名]
def test_different(self, right_vals):
left = DataFrame({'A': ['foo', 'bar'],
'B': Series(['foo', 'bar']).astype('category'),
'C': [1, 2],
'D': [1.0, 2.0],
'E': Series([1, 2], dtype='uint64'),
'F': Series([1, 2], dtype='int32')})
right = DataFrame({'A': right_vals})
# GH 9780
# We allow merging on object and categorical cols and cast
# categorical cols to object
if (is_categorical_dtype(right['A'].dtype) or
is_object_dtype(right['A'].dtype)):
result = pd.merge(left, right, on='A')
assert is_object_dtype(result.A.dtype)
# GH 9780
# We raise for merging on object col and int/float col and
# merging on categorical col and int/float col
else:
msg = ("You are trying to merge on "
"{lk_dtype} and {rk_dtype} columns. "
"If you wish to proceed you should use "
"pd.concat".format(lk_dtype=left['A'].dtype,
rk_dtype=right['A'].dtype))
with tm.assert_raises_regex(ValueError, msg):
pd.merge(left, right, on='A')
示例6: test_different
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_object_dtype [as 别名]
def test_different(self, df):
# we expect differences by kind
# to be ok, while other differences should return object
left = df
for col in df.columns:
right = DataFrame({'A': df[col]})
result = pd.merge(left, right, on='A')
assert is_object_dtype(result.A.dtype)
示例7: make_sparse
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_object_dtype [as 别名]
def make_sparse(arr, kind='block', fill_value=None, dtype=None, copy=False):
"""
Convert ndarray to sparse format
Parameters
----------
arr : ndarray
kind : {'block', 'integer'}
fill_value : NaN or another value
dtype : np.dtype, optional
copy : bool, default False
Returns
-------
(sparse_values, index, fill_value) : (ndarray, SparseIndex, Scalar)
"""
arr = _sanitize_values(arr)
if arr.ndim > 1:
raise TypeError("expected dimension <= 1 data")
if fill_value is None:
fill_value = na_value_for_dtype(arr.dtype)
if isna(fill_value):
mask = notna(arr)
else:
# For str arrays in NumPy 1.12.0, operator!= below isn't
# element-wise but just returns False if fill_value is not str,
# so cast to object comparison to be safe
if is_string_dtype(arr):
arr = arr.astype(object)
if is_object_dtype(arr.dtype):
# element-wise equality check method in numpy doesn't treat
# each element type, eg. 0, 0.0, and False are treated as
# same. So we have to check the both of its type and value.
mask = splib.make_mask_object_ndarray(arr, fill_value)
else:
mask = arr != fill_value
length = len(arr)
if length != len(mask):
# the arr is a SparseArray
indices = mask.sp_index.indices
else:
indices = mask.nonzero()[0].astype(np.int32)
index = _make_index(length, indices, kind)
sparsified_values = arr[mask]
if dtype is not None:
sparsified_values = astype_nansafe(sparsified_values, dtype=dtype)
# TODO: copy
return sparsified_values, index, fill_value