本文整理汇总了Python中pandas.core.dtypes.common.is_integer_dtype方法的典型用法代码示例。如果您正苦于以下问题:Python common.is_integer_dtype方法的具体用法?Python common.is_integer_dtype怎么用?Python common.is_integer_dtype使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.dtypes.common
的用法示例。
在下文中一共展示了common.is_integer_dtype方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_returned_dtype
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_returned_dtype(self):
dtypes = [np.int16, np.int32, np.int64, np.float32, np.float64]
if hasattr(np, 'float128'):
dtypes.append(np.float128)
for dtype in dtypes:
s = Series(range(10), dtype=dtype)
group_a = ['mean', 'std', 'var', 'skew', 'kurt']
group_b = ['min', 'max']
for method in group_a + group_b:
result = getattr(s, method)()
if is_integer_dtype(dtype) and method in group_a:
assert result.dtype == np.float64
else:
assert result.dtype == dtype
示例2: test_delevel_infer_dtype
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_delevel_infer_dtype(self):
tuples = [tuple
for tuple in cart_product(
['foo', 'bar'], [10, 20], [1.0, 1.1])]
index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2'])
df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'],
index=index)
deleveled = df.reset_index()
assert is_integer_dtype(deleveled['prm1'])
assert is_float_dtype(deleveled['prm2'])
示例3: test_setitem_dtype_upcast
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_setitem_dtype_upcast(self):
# GH3216
df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
df['c'] = np.nan
assert df['c'].dtype == np.float64
df.loc[0, 'c'] = 'foo'
expected = DataFrame([{"a": 1, "c": 'foo'},
{"a": 3, "b": 2, "c": np.nan}])
tm.assert_frame_equal(df, expected)
# GH10280
df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3),
index=list('ab'),
columns=['foo', 'bar', 'baz'])
for val in [3.14, 'wxyz']:
left = df.copy()
left.loc['a', 'bar'] = val
right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'),
columns=['foo', 'bar', 'baz'])
tm.assert_frame_equal(left, right)
assert is_integer_dtype(left['foo'])
assert is_integer_dtype(left['baz'])
left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0,
index=list('ab'),
columns=['foo', 'bar', 'baz'])
left.loc['a', 'bar'] = 'wxyz'
right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'),
columns=['foo', 'bar', 'baz'])
tm.assert_frame_equal(left, right)
assert is_float_dtype(left['foo'])
assert is_float_dtype(left['baz'])
示例4: test_constructor_list_of_lists
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_constructor_list_of_lists(self):
# GH #484
df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"])
assert is_integer_dtype(df['num'])
assert df['str'].dtype == np.object_
# GH 4851
# list of 0-dim ndarrays
expected = DataFrame({0: np.arange(10)})
data = [np.array(x) for x in range(10)]
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
示例5: test_is_not_integer_dtype
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_is_not_integer_dtype(dtype):
assert not com.is_integer_dtype(dtype)
示例6: test_is_signed_integer_dtype
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_is_signed_integer_dtype(dtype):
assert com.is_integer_dtype(dtype)
示例7: test_constructor_list_of_lists
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_constructor_list_of_lists(self):
# GH #484
l = [[1, 'a'], [2, 'b']]
df = DataFrame(data=l, columns=["num", "str"])
assert is_integer_dtype(df['num'])
assert df['str'].dtype == np.object_
# GH 4851
# list of 0-dim ndarrays
expected = DataFrame({0: np.arange(10)})
data = [np.array(x) for x in range(10)]
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
示例8: test_is_integer_dtype
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_is_integer_dtype():
assert not com.is_integer_dtype(str)
assert not com.is_integer_dtype(float)
assert not com.is_integer_dtype(np.datetime64)
assert not com.is_integer_dtype(np.timedelta64)
assert not com.is_integer_dtype(pd.Index([1, 2.]))
assert not com.is_integer_dtype(np.array(['a', 'b']))
assert not com.is_integer_dtype(np.array([], dtype=np.timedelta64))
assert com.is_integer_dtype(int)
assert com.is_integer_dtype(np.uint64)
assert com.is_integer_dtype(pd.Series([1, 2]))
示例9: test_basic_types
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer_dtype [as 别名]
def test_basic_types(self, sparse, dtype):
# GH 10531
s_list = list('abc')
s_series = Series(s_list)
s_df = DataFrame({'a': [0, 1, 0, 1, 2],
'b': ['A', 'A', 'B', 'C', 'C'],
'c': [2, 3, 3, 3, 2]})
expected = DataFrame({'a': [1, 0, 0],
'b': [0, 1, 0],
'c': [0, 0, 1]},
dtype=self.effective_dtype(dtype),
columns=list('abc'))
if sparse:
if is_integer_dtype(dtype):
fill_value = 0
elif dtype == bool:
fill_value = False
else:
fill_value = 0.0
expected = expected.apply(SparseArray, fill_value=fill_value)
result = get_dummies(s_list, sparse=sparse, dtype=dtype)
tm.assert_frame_equal(result, expected)
result = get_dummies(s_series, sparse=sparse, dtype=dtype)
tm.assert_frame_equal(result, expected)
result = get_dummies(s_df, columns=s_df.columns,
sparse=sparse, dtype=dtype)
if sparse:
dtype_name = 'Sparse[{}, {}]'.format(
self.effective_dtype(dtype).name,
fill_value
)
else:
dtype_name = self.effective_dtype(dtype).name
expected = Series({dtype_name: 8})
tm.assert_series_equal(result.get_dtype_counts(), expected)
result = get_dummies(s_df, columns=['a'], sparse=sparse, dtype=dtype)
expected_counts = {'int64': 1, 'object': 1}
expected_counts[dtype_name] = 3 + expected_counts.get(dtype_name, 0)
expected = Series(expected_counts).sort_index()
tm.assert_series_equal(result.get_dtype_counts().sort_index(),
expected)