本文整理汇总了Python中pandas.core.dtypes.common.is_integer方法的典型用法代码示例。如果您正苦于以下问题:Python common.is_integer方法的具体用法?Python common.is_integer怎么用?Python common.is_integer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.dtypes.common
的用法示例。
在下文中一共展示了common.is_integer方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_where_numeric_with_string
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def test_where_numeric_with_string():
# GH 9280
s = pd.Series([1, 2, 3])
w = s.where(s > 1, 'X')
assert not is_integer(w[0])
assert is_integer(w[1])
assert is_integer(w[2])
assert isinstance(w[0], str)
assert w.dtype == 'object'
w = s.where(s > 1, ['X', 'Y', 'Z'])
assert not is_integer(w[0])
assert is_integer(w[1])
assert is_integer(w[2])
assert isinstance(w[0], str)
assert w.dtype == 'object'
w = s.where(s > 1, np.array(['X', 'Y', 'Z']))
assert not is_integer(w[0])
assert is_integer(w[1])
assert is_integer(w[2])
assert isinstance(w[0], str)
assert w.dtype == 'object'
示例2: test_where_numeric_with_string
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def test_where_numeric_with_string(self):
# GH 9280
s = pd.Series([1, 2, 3])
w = s.where(s > 1, 'X')
assert not is_integer(w[0])
assert is_integer(w[1])
assert is_integer(w[2])
assert isinstance(w[0], str)
assert w.dtype == 'object'
w = s.where(s > 1, ['X', 'Y', 'Z'])
assert not is_integer(w[0])
assert is_integer(w[1])
assert is_integer(w[2])
assert isinstance(w[0], str)
assert w.dtype == 'object'
w = s.where(s > 1, np.array(['X', 'Y', 'Z']))
assert not is_integer(w[0])
assert is_integer(w[1])
assert is_integer(w[2])
assert isinstance(w[0], str)
assert w.dtype == 'object'
示例3: validate_argsort_with_ascending
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def validate_argsort_with_ascending(ascending, args, kwargs):
"""
If 'Categorical.argsort' is called via the 'numpy' library, the
first parameter in its signature is 'axis', which takes either
an integer or 'None', so check if the 'ascending' parameter has
either integer type or is None, since 'ascending' itself should
be a boolean
"""
if is_integer(ascending) or ascending is None:
args = (ascending,) + args
ascending = True
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
return ascending
示例4: test_float_subtype
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def test_float_subtype(self, start, end, freq):
# Has float subtype if any of start/end/freq are float, even if all
# resulting endpoints can safely be upcast to integers
# defined from start/end/freq
index = interval_range(start=start, end=end, freq=freq)
result = index.dtype.subtype
expected = 'int64' if is_integer(start + end + freq) else 'float64'
assert result == expected
# defined from start/periods/freq
index = interval_range(start=start, periods=5, freq=freq)
result = index.dtype.subtype
expected = 'int64' if is_integer(start + freq) else 'float64'
assert result == expected
# defined from end/periods/freq
index = interval_range(end=end, periods=5, freq=freq)
result = index.dtype.subtype
expected = 'int64' if is_integer(end + freq) else 'float64'
assert result == expected
# GH 20976: linspace behavior defined from start/end/periods
index = interval_range(start=start, end=end, periods=5)
result = index.dtype.subtype
expected = 'int64' if is_integer(start + end) else 'float64'
assert result == expected
示例5: test_quantile_interpolation_dtype
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def test_quantile_interpolation_dtype(self):
# GH #10174
# interpolation = linear (default case)
q = pd.Series([1, 3, 4]).quantile(0.5, interpolation='lower')
assert q == np.percentile(np.array([1, 3, 4]), 50)
assert is_integer(q)
q = pd.Series([1, 3, 4]).quantile(0.5, interpolation='higher')
assert q == np.percentile(np.array([1, 3, 4]), 50)
assert is_integer(q)
示例6: test_single_element_ix_dont_upcast
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def test_single_element_ix_dont_upcast(self):
self.frame['E'] = 1
assert issubclass(self.frame['E'].dtype.type, (int, np.integer))
with catch_warnings(record=True):
simplefilter("ignore", DeprecationWarning)
result = self.frame.ix[self.frame.index[5], 'E']
assert is_integer(result)
result = self.frame.loc[self.frame.index[5], 'E']
assert is_integer(result)
# GH 11617
df = pd.DataFrame(dict(a=[1.23]))
df["b"] = 666
with catch_warnings(record=True):
simplefilter("ignore", DeprecationWarning)
result = df.ix[0, "b"]
assert is_integer(result)
result = df.loc[0, "b"]
assert is_integer(result)
expected = Series([666], [0], name='b')
with catch_warnings(record=True):
simplefilter("ignore", DeprecationWarning)
result = df.ix[[0], "b"]
assert_series_equal(result, expected)
result = df.loc[[0], "b"]
assert_series_equal(result, expected)
示例7: _random_state
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def _random_state(state=None):
"""
Helper function for processing random_state arguments.
Parameters
----------
state : int, np.random.RandomState, None.
If receives an int, passes to np.random.RandomState() as seed.
If receives an np.random.RandomState object, just returns object.
If receives `None`, returns np.random.
If receives anything else, raises an informative ValueError.
Default None.
Returns
-------
np.random.RandomState
"""
if is_integer(state):
return np.random.RandomState(state)
elif isinstance(state, np.random.RandomState):
return state
elif state is None:
return np.random
else:
raise ValueError("random_state must be an integer, a numpy "
"RandomState, or None")
示例8: is_integer_slice
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def is_integer_slice(x):
if not is_slice(x):
return False
for pos in [x.start, x.stop, x.step]:
if not ((pos is None) or is_integer(pos)):
return False # one position is neither None nor int
return True
示例9: _check_dtypes
# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_integer [as 别名]
def _check_dtypes(self, locator):
is_int = is_integer(locator)
is_int_slice = is_integer_slice(locator)
is_int_list = is_list_like(locator) and all(map(is_integer, locator))
is_bool_arr = is_boolean_array(locator)
if not any([is_int, is_int_slice, is_int_list, is_bool_arr]):
raise ValueError(_ILOC_INT_ONLY_ERROR)