当前位置: 首页>>代码示例>>Python>>正文


Python common.is_bool_dtype方法代码示例

本文整理汇总了Python中pandas.core.dtypes.common.is_bool_dtype方法的典型用法代码示例。如果您正苦于以下问题:Python common.is_bool_dtype方法的具体用法?Python common.is_bool_dtype怎么用?Python common.is_bool_dtype使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.core.dtypes.common的用法示例。


在下文中一共展示了common.is_bool_dtype方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _wrap_result

# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_bool_dtype [as 别名]
def _wrap_result(name, data, sparse_index, fill_value, dtype=None):
    """
    wrap op result to have correct dtype
    """
    if name.startswith('__'):
        # e.g. __eq__ --> eq
        name = name[2:-2]

    if name in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'):
        dtype = np.bool

    fill_value = lib.item_from_zerodim(fill_value)

    if is_bool_dtype(dtype):
        # fill_value may be np.bool_
        fill_value = bool(fill_value)
    return SparseArray(data,
                       sparse_index=sparse_index,
                       fill_value=fill_value,
                       dtype=dtype) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:22,代码来源:sparse.py

示例2: test_is_bool_dtype

# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_bool_dtype [as 别名]
def test_is_bool_dtype():
    assert not com.is_bool_dtype(int)
    assert not com.is_bool_dtype(str)
    assert not com.is_bool_dtype(pd.Series([1, 2]))
    assert not com.is_bool_dtype(np.array(['a', 'b']))
    assert not com.is_bool_dtype(pd.Index(['a', 'b']))

    assert com.is_bool_dtype(bool)
    assert com.is_bool_dtype(np.bool)
    assert com.is_bool_dtype(np.array([True, False]))
    assert com.is_bool_dtype(pd.Index([True, False])) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:13,代码来源:test_common.py

示例3: _is_boolean

# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_bool_dtype [as 别名]
def _is_boolean(self):
        from pandas.core.dtypes.common import is_bool_dtype
        return is_bool_dtype(self.subtype) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:5,代码来源:sparse.py

示例4: __getitem__

# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_bool_dtype [as 别名]
def __getitem__(self, key):
        if isinstance(key, tuple):
            if len(key) > 1:
                raise IndexError("too many indices for array.")
            key = key[0]

        if is_integer(key):
            return self._get_val_at(key)
        elif isinstance(key, tuple):
            data_slice = self.values[key]
        elif isinstance(key, slice):
            # special case to preserve dtypes
            if key == slice(None):
                return self.copy()
            # TODO: this logic is surely elsewhere
            # TODO: this could be more efficient
            indices = np.arange(len(self), dtype=np.int32)[key]
            return self.take(indices)
        else:
            # TODO: I think we can avoid densifying when masking a
            # boolean SparseArray with another. Need to look at the
            # key's fill_value for True / False, and then do an intersection
            # on the indicies of the sp_values.
            if isinstance(key, SparseArray):
                if is_bool_dtype(key):
                    key = key.to_dense()
                else:
                    key = np.asarray(key)

            if com.is_bool_indexer(key) and len(self) == len(key):
                return self.take(np.arange(len(key), dtype=np.int32)[key])
            elif hasattr(key, '__len__'):
                return self.take(key)
            else:
                raise ValueError("Cannot slice with '{}'".format(key))

        return type(self)(data_slice, kind=self.kind) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:39,代码来源:sparse.py

示例5: test_from_to_scipy

# 需要导入模块: from pandas.core.dtypes import common [as 别名]
# 或者: from pandas.core.dtypes.common import is_bool_dtype [as 别名]
def test_from_to_scipy(spmatrix, index, columns, fill_value, dtype):
    # GH 4343
    # Make one ndarray and from it one sparse matrix, both to be used for
    # constructing frames and comparing results
    arr = np.eye(3, dtype=dtype)
    # GH 16179
    arr[0, 1] = dtype(2)
    try:
        spm = spmatrix(arr)
        assert spm.dtype == arr.dtype
    except (TypeError, AssertionError):
        # If conversion to sparse fails for this spmatrix type and arr.dtype,
        # then the combination is not currently supported in NumPy, so we
        # can just skip testing it thoroughly
        return

    sdf = SparseDataFrame(spm, index=index, columns=columns,
                          default_fill_value=fill_value)

    # Expected result construction is kind of tricky for all
    # dtype-fill_value combinations; easiest to cast to something generic
    # and except later on
    rarr = arr.astype(object)
    rarr[arr == 0] = np.nan
    expected = SparseDataFrame(rarr, index=index, columns=columns).fillna(
        fill_value if fill_value is not None else np.nan)

    # Assert frame is as expected
    sdf_obj = sdf.astype(object)
    tm.assert_sp_frame_equal(sdf_obj, expected)
    tm.assert_frame_equal(sdf_obj.to_dense(), expected.to_dense())

    # Assert spmatrices equal
    assert dict(sdf.to_coo().todok()) == dict(spm.todok())

    # Ensure dtype is preserved if possible
    # XXX: verify this
    res_dtype = bool if is_bool_dtype(dtype) else dtype
    tm.assert_contains_all(sdf.dtypes.apply(lambda dtype: dtype.subtype),
                           {np.dtype(res_dtype)})
    assert sdf.to_coo().dtype == res_dtype

    # However, adding a str column results in an upcast to object
    sdf['strings'] = np.arange(len(sdf)).astype(str)
    assert sdf.to_coo().dtype == np.object_ 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:47,代码来源:test_to_from_scipy.py


注:本文中的pandas.core.dtypes.common.is_bool_dtype方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。