本文整理汇总了Python中pandas.core.dtypes.cast.maybe_upcast方法的典型用法代码示例。如果您正苦于以下问题:Python cast.maybe_upcast方法的具体用法?Python cast.maybe_upcast怎么用?Python cast.maybe_upcast使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.dtypes.cast
的用法示例。
在下文中一共展示了cast.maybe_upcast方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _reindex_index
# 需要导入模块: from pandas.core.dtypes import cast [as 别名]
# 或者: from pandas.core.dtypes.cast import maybe_upcast [as 别名]
def _reindex_index(self, index, method, copy, level, fill_value=np.nan,
limit=None, takeable=False):
if level is not None:
raise TypeError('Reindex by level not supported for sparse')
if self.index.equals(index):
if copy:
return self.copy()
else:
return self
if len(self.index) == 0:
return self._constructor(
index=index, columns=self.columns).__finalize__(self)
indexer = self.index.get_indexer(index, method, limit=limit)
indexer = ensure_platform_int(indexer)
mask = indexer == -1
need_mask = mask.any()
new_series = {}
for col, series in self.iteritems():
if mask.all():
continue
values = series.values
# .take returns SparseArray
new = values.take(indexer)
if need_mask:
new = new.values
# convert integer to float if necessary. need to do a lot
# more than that, handle boolean etc also
new, fill_value = maybe_upcast(new, fill_value=fill_value)
np.putmask(new, mask, fill_value)
new_series[col] = new
return self._constructor(
new_series, index=index, columns=self.columns,
default_fill_value=self._default_fill_value).__finalize__(self)
示例2: _reindex_index
# 需要导入模块: from pandas.core.dtypes import cast [as 别名]
# 或者: from pandas.core.dtypes.cast import maybe_upcast [as 别名]
def _reindex_index(self, index, method, copy, level, fill_value=np.nan,
limit=None, takeable=False):
if level is not None:
raise TypeError('Reindex by level not supported for sparse')
if self.index.equals(index):
if copy:
return self.copy()
else:
return self
if len(self.index) == 0:
return self._constructor(
index=index, columns=self.columns).__finalize__(self)
indexer = self.index.get_indexer(index, method, limit=limit)
indexer = _ensure_platform_int(indexer)
mask = indexer == -1
need_mask = mask.any()
new_series = {}
for col, series in self.iteritems():
if mask.all():
continue
values = series.values
# .take returns SparseArray
new = values.take(indexer)
if need_mask:
new = new.values
# convert integer to float if necessary. need to do a lot
# more than that, handle boolean etc also
new, fill_value = maybe_upcast(new, fill_value=fill_value)
np.putmask(new, mask, fill_value)
new_series[col] = new
return self._constructor(
new_series, index=index, columns=self.columns,
default_fill_value=self._default_fill_value).__finalize__(self)