本文整理汇总了Python中pandas.core.common.is_null_slice方法的典型用法代码示例。如果您正苦于以下问题:Python common.is_null_slice方法的具体用法?Python common.is_null_slice怎么用?Python common.is_null_slice使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.core.common
的用法示例。
在下文中一共展示了common.is_null_slice方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _slice
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _slice(self, slicer):
"""
Return a slice of myself.
For internal compatibility with numpy arrays.
"""
# only allow 1 dimensional slicing, but can
# in a 2-d case be passd (slice(None),....)
if isinstance(slicer, tuple) and len(slicer) == 2:
if not com.is_null_slice(slicer[0]):
raise AssertionError("invalid slicing for a 1-ndim "
"categorical")
slicer = slicer[1]
codes = self._codes[slicer]
return self._constructor(values=codes, dtype=self.dtype, fastpath=True)
示例2: _getitem_tuple
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _getitem_tuple(self, tup):
try:
return self._getitem_lowerdim(tup)
except IndexingError:
pass
# no multi-index, so validate all of the indexers
self._has_valid_tuple(tup)
# ugly hack for GH #836
if self._multi_take_opportunity(tup):
return self._multi_take(tup)
# no shortcut needed
retval = self.obj
for i, key in enumerate(tup):
if i >= self.obj.ndim:
raise IndexingError('Too many indexers')
if com.is_null_slice(key):
continue
retval = getattr(retval, self.name)._getitem_axis(key, axis=i)
return retval
示例3: _slice
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _slice(self, slicer):
""" Return a slice of myself.
For internal compatibility with numpy arrays.
"""
# only allow 1 dimensional slicing, but can
# in a 2-d case be passd (slice(None),....)
if isinstance(slicer, tuple) and len(slicer) == 2:
if not com.is_null_slice(slicer[0]):
raise AssertionError("invalid slicing for a 1-ndim "
"categorical")
slicer = slicer[1]
_codes = self._codes[slicer]
return self._constructor(values=_codes, categories=self.categories,
ordered=self.ordered, fastpath=True)
示例4: _slice
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _slice(self, slicer):
""" Return a slice of myself.
For internal compatibility with numpy arrays.
"""
# only allow 1 dimensional slicing, but can
# in a 2-d case be passd (slice(None),....)
if isinstance(slicer, tuple) and len(slicer) == 2:
if not is_null_slice(slicer[0]):
raise AssertionError("invalid slicing for a 1-ndim "
"categorical")
slicer = slicer[1]
_codes = self._codes[slicer]
return self._constructor(values=_codes, categories=self.categories,
ordered=self.ordered, fastpath=True)
示例5: iget
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def iget(self, col):
if self.ndim == 2 and isinstance(col, tuple):
col, loc = col
if not com.is_null_slice(col) and col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values[loc]
else:
if col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values
示例6: _slice
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _slice(self, slicer):
""" return a slice of my values """
# slice the category
# return same dims as we currently have
if isinstance(slicer, tuple) and len(slicer) == 2:
if not com.is_null_slice(slicer[0]):
raise AssertionError("invalid slicing for a 1-ndim "
"categorical")
slicer = slicer[1]
return self.values[slicer]
示例7: iget
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def iget(self, col):
if self.ndim == 2 and isinstance(col, tuple):
col, loc = col
if not is_null_slice(col) and col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values[loc]
else:
if col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values
示例8: _slice
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _slice(self, slicer):
""" return a slice of my values """
if isinstance(slicer, tuple):
col, loc = slicer
if not is_null_slice(col) and col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values[loc]
return self.values[slicer]
示例9: _getitem_nested_tuple
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _getitem_nested_tuple(self, tup):
# we have a nested tuple so have at least 1 multi-index level
# we should be able to match up the dimensionaility here
# we have too many indexers for our dim, but have at least 1
# multi-index dimension, try to see if we have something like
# a tuple passed to a series with a multi-index
if len(tup) > self.ndim:
result = self._handle_lowerdim_multi_index_axis0(tup)
if result is not None:
return result
# this is a series with a multi-index specified a tuple of
# selectors
return self._getitem_axis(tup, axis=self.axis)
# handle the multi-axis by taking sections and reducing
# this is iterative
obj = self.obj
axis = 0
for i, key in enumerate(tup):
if com.is_null_slice(key):
axis += 1
continue
current_ndim = obj.ndim
obj = getattr(obj, self.name)._getitem_axis(key, axis=axis)
axis += 1
# if we have a scalar, we are done
if is_scalar(obj) or not hasattr(obj, 'ndim'):
break
# has the dim of the obj changed?
# GH 7199
if obj.ndim < current_ndim:
# GH 7516
# if had a 3 dim and are going to a 2d
# axes are reversed on a DataFrame
if i >= 1 and current_ndim == 3 and obj.ndim == 2:
obj = obj.T
axis -= 1
return obj
示例10: _getitem_lowerdim
# 需要导入模块: from pandas.core import common [as 别名]
# 或者: from pandas.core.common import is_null_slice [as 别名]
def _getitem_lowerdim(self, tup):
# we can directly get the axis result since the axis is specified
if self.axis is not None:
axis = self.obj._get_axis_number(self.axis)
return self._getitem_axis(tup, axis=axis)
# we may have a nested tuples indexer here
if self._is_nested_tuple_indexer(tup):
return self._getitem_nested_tuple(tup)
# we maybe be using a tuple to represent multiple dimensions here
ax0 = self.obj._get_axis(0)
# ...but iloc should handle the tuple as simple integer-location
# instead of checking it as multiindex representation (GH 13797)
if isinstance(ax0, MultiIndex) and self.name != 'iloc':
result = self._handle_lowerdim_multi_index_axis0(tup)
if result is not None:
return result
if len(tup) > self.obj.ndim:
raise IndexingError("Too many indexers. handle elsewhere")
# to avoid wasted computation
# df.ix[d1:d2, 0] -> columns first (True)
# df.ix[0, ['C', 'B', A']] -> rows first (False)
for i, key in enumerate(tup):
if is_label_like(key) or isinstance(key, tuple):
section = self._getitem_axis(key, axis=i)
# we have yielded a scalar ?
if not is_list_like_indexer(section):
return section
elif section.ndim == self.ndim:
# we're in the middle of slicing through a MultiIndex
# revise the key wrt to `section` by inserting an _NS
new_key = tup[:i] + (_NS,) + tup[i + 1:]
else:
new_key = tup[:i] + tup[i + 1:]
# unfortunately need an odious kludge here because of
# DataFrame transposing convention
if (isinstance(section, ABCDataFrame) and i > 0 and
len(new_key) == 2):
a, b = new_key
new_key = b, a
if len(new_key) == 1:
new_key, = new_key
# Slices should return views, but calling iloc/loc with a null
# slice returns a new object.
if com.is_null_slice(new_key):
return section
# This is an elided recursive call to iloc/loc/etc'
return getattr(section, self.name)[new_key]
raise IndexingError('not applicable')