本文整理汇总了Python中pandas.compat.lmap方法的典型用法代码示例。如果您正苦于以下问题:Python compat.lmap方法的具体用法?Python compat.lmap怎么用?Python compat.lmap使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.compat
的用法示例。
在下文中一共展示了compat.lmap方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_map_with_string_constructor
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_map_with_string_constructor(self):
raw = [2005, 2007, 2009]
index = PeriodIndex(raw, freq='A')
types = str,
if PY3:
# unicode
types += text_type,
for t in types:
expected = Index(lmap(t, raw))
res = index.map(t)
# should return an Index
assert isinstance(res, Index)
# preserve element types
assert all(isinstance(resi, t) for resi in res)
# lastly, values should compare equal
tm.assert_index_equal(res, expected)
示例2: test_kde_colors
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_kde_colors(self):
_skip_if_no_scipy_gaussian_kde()
from matplotlib import cm
custom_colors = 'rgcby'
df = DataFrame(rand(5, 5))
ax = df.plot.kde(color=custom_colors)
self._check_colors(ax.get_lines(), linecolors=custom_colors)
tm.close()
ax = df.plot.kde(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
tm.close()
ax = df.plot.kde(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
示例3: applymap
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def applymap(self, func):
"""
Apply a function to a DataFrame that is intended to operate
elementwise, i.e. like doing map(func, series) for each series in the
DataFrame
Parameters
----------
func : function
Python function, returns a single value from a single value
Returns
-------
applied : DataFrame
"""
return self.apply(lambda x: lmap(func, x))
示例4: is_one_of_factory
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def is_one_of_factory(legal_values):
callables = [c for c in legal_values if callable(c)]
legal_values = [c for c in legal_values if not callable(c)]
def inner(x):
from pandas.io.formats.printing import pprint_thing as pp
if x not in legal_values:
if not any(c(x) for c in callables):
pp_values = pp("|".join(lmap(pp, legal_values)))
msg = "Value must be one of {pp_values}"
if len(callables):
msg += " or a callable"
raise ValueError(msg.format(pp_values=pp_values))
return inner
# common type validators, for convenience
# usage: register_option(... , validator = is_int)
示例5: test_kde_colors
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_kde_colors(self):
_skip_if_no_scipy_gaussian_kde()
if not self.mpl_ge_1_5_0:
pytest.skip("mpl is not supported")
from matplotlib import cm
custom_colors = 'rgcby'
df = DataFrame(rand(5, 5))
ax = df.plot.kde(color=custom_colors)
self._check_colors(ax.get_lines(), linecolors=custom_colors)
tm.close()
ax = df.plot.kde(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
tm.close()
ax = df.plot.kde(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
示例6: test_map_with_string_constructor
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_map_with_string_constructor(self):
raw = [2005, 2007, 2009]
index = PeriodIndex(raw, freq='A')
types = str,
if compat.PY3:
# unicode
types += compat.text_type,
for t in types:
expected = np.array(lmap(t, raw), dtype=object)
res = index.map(t)
# should return an array
tm.assert_isinstance(res, np.ndarray)
# preserve element types
self.assert_(all(isinstance(resi, t) for resi in res))
# dtype should be object
self.assertEqual(res.dtype, np.dtype('object').type)
# lastly, values should compare equal
assert_array_equal(res, expected)
示例7: is_one_of_factory
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def is_one_of_factory(legal_values):
callables = [c for c in legal_values if callable(c)]
legal_values = [c for c in legal_values if not callable(c)]
def inner(x):
from pandas.io.formats.printing import pprint_thing as pp
if x not in legal_values:
if not any([c(x) for c in callables]):
pp_values = pp("|".join(lmap(pp, legal_values)))
msg = "Value must be one of {pp_values}"
if len(callables):
msg += " or a callable"
raise ValueError(msg.format(pp_values=pp_values))
return inner
# common type validators, for convenience
# usage: register_option(... , validator = is_int)
示例8: test_kde_colors
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_kde_colors(self):
tm._skip_if_no_scipy()
_skip_if_no_scipy_gaussian_kde()
if not self.mpl_ge_1_5_0:
pytest.skip("mpl is not supported")
from matplotlib import cm
custom_colors = 'rgcby'
df = DataFrame(rand(5, 5))
ax = df.plot.kde(color=custom_colors)
self._check_colors(ax.get_lines(), linecolors=custom_colors)
tm.close()
ax = df.plot.kde(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
tm.close()
ax = df.plot.kde(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
示例9: autocorrelation_plot
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def autocorrelation_plot(series, ax=None, **kwds):
"""Autocorrelation plot for time series.
Parameters:
-----------
series: Time series
ax: Matplotlib axis object, optional
kwds : keywords
Options to pass to matplotlib plotting method
Returns:
-----------
ax: Matplotlib axis object
"""
import matplotlib.pyplot as plt
n = len(series)
data = np.asarray(series)
if ax is None:
ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0))
mean = np.mean(data)
c0 = np.sum((data - mean) ** 2) / float(n)
def r(h):
return ((data[:n - h] - mean) *
(data[h:] - mean)).sum() / float(n) / c0
x = np.arange(n) + 1
y = lmap(r, x)
z95 = 1.959963984540054
z99 = 2.5758293035489004
ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey')
ax.axhline(y=z95 / np.sqrt(n), color='grey')
ax.axhline(y=0.0, color='black')
ax.axhline(y=-z95 / np.sqrt(n), color='grey')
ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey')
ax.set_xlabel("Lag")
ax.set_ylabel("Autocorrelation")
ax.plot(x, y, **kwds)
if 'label' in kwds:
ax.legend()
ax.grid()
return ax
示例10: test_to_datetime_types
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_to_datetime_types(self, cache):
# empty string
result = to_datetime('', cache=cache)
assert result is NaT
result = to_datetime(['', ''], cache=cache)
assert isna(result).all()
# ints
result = Timestamp(0)
expected = to_datetime(0, cache=cache)
assert result == expected
# GH 3888 (strings)
expected = to_datetime(['2012'], cache=cache)[0]
result = to_datetime('2012', cache=cache)
assert result == expected
# array = ['2012','20120101','20120101 12:01:01']
array = ['20120101', '20120101 12:01:01']
expected = list(to_datetime(array, cache=cache))
result = lmap(Timestamp, array)
tm.assert_almost_equal(result, expected)
# currently fails ###
# result = Timestamp('2012')
# expected = to_datetime('2012')
# assert result == expected
示例11: test_radviz
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_radviz(self, iris):
from pandas.plotting import radviz
from matplotlib import cm
df = iris
_check_plot_works(radviz, frame=df, class_column='Name')
rgba = ('#556270', '#4ECDC4', '#C7F464')
ax = _check_plot_works(
radviz, frame=df, class_column='Name', color=rgba)
# skip Circle drawn as ticks
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(
patches[:10], facecolors=rgba, mapping=df['Name'][:10])
cnames = ['dodgerblue', 'aquamarine', 'seagreen']
_check_plot_works(radviz, frame=df, class_column='Name', color=cnames)
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(patches, facecolors=cnames, mapping=df['Name'][:10])
_check_plot_works(radviz, frame=df,
class_column='Name', colormap=cm.jet)
cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(patches, facecolors=cmaps, mapping=df['Name'][:10])
colors = [[0., 0., 1., 1.],
[0., 0.5, 1., 1.],
[1., 0., 0., 1.]]
df = DataFrame({"A": [1, 2, 3],
"B": [2, 1, 3],
"C": [3, 2, 1],
"Name": ['b', 'g', 'r']})
ax = radviz(df, 'Name', color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, facecolors=colors)
示例12: test_bar_colors
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_bar_colors(self):
import matplotlib.pyplot as plt
default_colors = self._unpack_cycler(plt.rcParams)
df = DataFrame(randn(5, 5))
ax = df.plot.bar()
self._check_colors(ax.patches[::5], facecolors=default_colors[:5])
tm.close()
custom_colors = 'rgcby'
ax = df.plot.bar(color=custom_colors)
self._check_colors(ax.patches[::5], facecolors=custom_colors)
tm.close()
from matplotlib import cm
# Test str -> colormap functionality
ax = df.plot.bar(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::5], facecolors=rgba_colors)
tm.close()
# Test colormap functionality
ax = df.plot.bar(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::5], facecolors=rgba_colors)
tm.close()
ax = df.loc[:, [0]].plot.bar(color='DodgerBlue')
self._check_colors([ax.patches[0]], facecolors=['DodgerBlue'])
tm.close()
ax = df.plot(kind='bar', color='green')
self._check_colors(ax.patches[::5], facecolors=['green'] * 5)
tm.close()
示例13: test_hist_colors
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_hist_colors(self):
default_colors = self._unpack_cycler(self.plt.rcParams)
df = DataFrame(randn(5, 5))
ax = df.plot.hist()
self._check_colors(ax.patches[::10], facecolors=default_colors[:5])
tm.close()
custom_colors = 'rgcby'
ax = df.plot.hist(color=custom_colors)
self._check_colors(ax.patches[::10], facecolors=custom_colors)
tm.close()
from matplotlib import cm
# Test str -> colormap functionality
ax = df.plot.hist(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::10], facecolors=rgba_colors)
tm.close()
# Test colormap functionality
ax = df.plot.hist(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::10], facecolors=rgba_colors)
tm.close()
ax = df.loc[:, [0]].plot.hist(color='DodgerBlue')
self._check_colors([ax.patches[0]], facecolors=['DodgerBlue'])
ax = df.plot(kind='hist', color='green')
self._check_colors(ax.patches[::10], facecolors=['green'] * 5)
tm.close()
示例14: test_to_csv_from_csv3
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def test_to_csv_from_csv3(self):
with ensure_clean('__tmp_to_csv_from_csv3__') as path:
df1 = DataFrame(np.random.randn(3, 1))
df2 = DataFrame(np.random.randn(3, 1))
df1.to_csv(path)
df2.to_csv(path, mode='a', header=False)
xp = pd.concat([df1, df2])
rs = pd.read_csv(path, index_col=0)
rs.columns = lmap(int, rs.columns)
xp.columns = lmap(int, xp.columns)
assert_frame_equal(xp, rs)
示例15: _preparse
# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import lmap [as 别名]
def _preparse(source, f=_compose(_replace_locals, _replace_booleans,
_rewrite_assign)):
"""Compose a collection of tokenization functions
Parameters
----------
source : str
A Python source code string
f : callable
This takes a tuple of (toknum, tokval) as its argument and returns a
tuple with the same structure but possibly different elements. Defaults
to the composition of ``_rewrite_assign``, ``_replace_booleans``, and
``_replace_locals``.
Returns
-------
s : str
Valid Python source code
Notes
-----
The `f` parameter can be any callable that takes *and* returns input of the
form ``(toknum, tokval)``, where ``toknum`` is one of the constants from
the ``tokenize`` module and ``tokval`` is a string.
"""
assert callable(f), 'f must be callable'
return tokenize.untokenize(lmap(f, tokenize_string(source)))