本文整理汇总了Python中pandas.compat方法的典型用法代码示例。如果您正苦于以下问题:Python pandas.compat方法的具体用法?Python pandas.compat怎么用?Python pandas.compat使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas
的用法示例。
在下文中一共展示了pandas.compat方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: write_legacy_pickles
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def write_legacy_pickles(output_dir):
# make sure we are < 0.13 compat (in py3)
try:
from pandas.compat import zip, cPickle as pickle # noqa
except ImportError:
import pickle
version = pandas.__version__
print("This script generates a storage file for the current arch, system, "
"and python version")
print(" pandas version: {0}".format(version))
print(" output dir : {0}".format(output_dir))
print(" storage format: pickle")
pth = '{0}.pickle'.format(platform_name())
fh = open(os.path.join(output_dir, pth), 'wb')
pickle.dump(create_pickle_data(), fh, pickle.HIGHEST_PROTOCOL)
fh.close()
print("created pickle file: %s" % pth)
示例2: setup_method
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def setup_method(self, method):
super(TestEncoding, self).setup_method(method)
data = {
'A': [compat.u('\u2019')] * 1000,
'B': np.arange(1000, dtype=np.int32),
'C': list(100 * 'abcdefghij'),
'D': date_range(datetime.datetime(2015, 4, 1), periods=1000),
'E': [datetime.timedelta(days=x) for x in range(1000)],
'G': [400] * 1000
}
self.frame = {
'float': DataFrame({k: data[k] for k in ['A', 'A']}),
'int': DataFrame({k: data[k] for k in ['B', 'B']}),
'mixed': DataFrame(data),
}
self.utf_encodings = ['utf8', 'utf16', 'utf32']
示例3: write_legacy_pickles
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def write_legacy_pickles(output_dir):
# make sure we are < 0.13 compat (in py3)
try:
from pandas.compat import zip, cPickle as pickle # noqa
except:
import pickle
version = pandas.__version__
print("This script generates a storage file for the current arch, system, "
"and python version")
print(" pandas version: {0}".format(version))
print(" output dir : {0}".format(output_dir))
print(" storage format: pickle")
pth = '{0}.pickle'.format(platform_name())
fh = open(os.path.join(output_dir, pth), 'wb')
pickle.dump(create_pickle_data(), fh, pickle.HIGHEST_PROTOCOL)
fh.close()
print("created pickle file: %s" % pth)
示例4: test_msgpacks_legacy
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def test_msgpacks_legacy(self, current_packers_data, all_packers_data,
legacy_packer, datapath):
version = os.path.basename(os.path.dirname(legacy_packer))
# GH12142 0.17 files packed in P2 can't be read in P3
if (compat.PY3 and version.startswith('0.17.') and
legacy_packer.split('.')[-4][-1] == '2'):
msg = "Files packed in Py2 can't be read in Py3 ({})"
pytest.skip(msg.format(version))
try:
with catch_warnings(record=True):
self.compare(current_packers_data, all_packers_data,
legacy_packer, version)
except ImportError:
# blosc not installed
pass
示例5: compare
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def compare(self, vf):
# py3 compat when reading py2 pickle
try:
data = pandas.read_pickle(vf)
except (ValueError) as detail:
# trying to read a py3 pickle in py2
return
for typ, dv in data.items():
for dt, result in dv.items():
try:
expected = self.data[typ][dt]
except (KeyError):
continue
self.compare_element(typ, result, expected)
示例6: test_constructor_dtypes_datetime
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def test_constructor_dtypes_datetime(self):
for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']:
idx = pd.date_range('2011-01-01', periods=5, tz=tz)
dtype = idx.dtype
# pass values without timezone, as DatetimeIndex localizes it
for values in [pd.date_range('2011-01-01', periods=5).values,
pd.date_range('2011-01-01', periods=5).asi8]:
for res in [pd.Index(values, tz=tz),
pd.Index(values, dtype=dtype),
pd.Index(list(values), tz=tz),
pd.Index(list(values), dtype=dtype)]:
tm.assert_index_equal(res, idx)
# check compat with DatetimeIndex
for res in [pd.DatetimeIndex(values, tz=tz),
pd.DatetimeIndex(values, dtype=dtype),
pd.DatetimeIndex(list(values), tz=tz),
pd.DatetimeIndex(list(values), dtype=dtype)]:
tm.assert_index_equal(res, idx)
示例7: test_equals_op_multiindex
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def test_equals_op_multiindex(self):
# GH9785
# test comparisons of multiindex
from pandas.compat import StringIO
df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1])
tm.assert_numpy_array_equal(df.index == df.index,
np.array([True, True]))
mi1 = MultiIndex.from_tuples([(1, 2), (4, 5)])
tm.assert_numpy_array_equal(df.index == mi1, np.array([True, True]))
mi2 = MultiIndex.from_tuples([(1, 2), (4, 6)])
tm.assert_numpy_array_equal(df.index == mi2, np.array([True, False]))
mi3 = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)])
with tm.assert_raises_regex(ValueError, "Lengths must match"):
df.index == mi3
index_a = Index(['foo', 'bar', 'baz'])
with tm.assert_raises_regex(ValueError, "Lengths must match"):
df.index == index_a
tm.assert_numpy_array_equal(index_a == mi3,
np.array([False, False, False]))
示例8: setup_method
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def setup_method(self, method):
super(TestEncoding, self).setup_method(method)
data = {
'A': [compat.u('\u2019')] * 1000,
'B': np.arange(1000, dtype=np.int32),
'C': list(100 * 'abcdefghij'),
'D': date_range(datetime.datetime(2015, 4, 1), periods=1000),
'E': [datetime.timedelta(days=x) for x in range(1000)],
'G': [400] * 1000
}
self.frame = {
'float': DataFrame(dict((k, data[k]) for k in ['A', 'A'])),
'int': DataFrame(dict((k, data[k]) for k in ['B', 'B'])),
'mixed': DataFrame(data),
}
self.utf_encodings = ['utf8', 'utf16', 'utf32']
示例9: from_csv
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def from_csv(infile, dtype=None):
"""Load marginals from file.
Args:
infile (unicode): path to csv
dtype (dict {unicode -> type}): pandas dtype dict, sets for each column label (dict key)
its data type (dict value). Since pandas automatically interprets numbers as
numeric types, columns containing codes (e.g. PUMA and state codes) must be set as
text types to preserve leading zeros.
Returns:
Marginals: marginals fetched from a csv file
"""
if dtype is None:
from pandas.compat import text_type
dtype = {
column: text_type for column in [inputs.PUMA.pums_name, inputs.STATE.pums_name]
}
data = pandas.read_csv(infile, dtype=dtype)
return PumsData(data)
示例10: test_string_io
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def test_string_io(self):
df = DataFrame(np.random.randn(10, 2))
s = df.to_msgpack(None)
result = read_msgpack(s)
tm.assert_frame_equal(result, df)
s = df.to_msgpack()
result = read_msgpack(s)
tm.assert_frame_equal(result, df)
s = df.to_msgpack()
result = read_msgpack(compat.BytesIO(s))
tm.assert_frame_equal(result, df)
s = to_msgpack(None, df)
result = read_msgpack(s)
tm.assert_frame_equal(result, df)
with ensure_clean(self.path) as p:
s = df.to_msgpack()
with open(p, 'wb') as fh:
fh.write(s)
result = read_msgpack(p)
tm.assert_frame_equal(result, df)
示例11: test_utf
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def test_utf(self):
# GH10581
for encoding in self.utf_encodings:
for frame in compat.itervalues(self.frame):
result = self.encode_decode(frame, encoding=encoding)
assert_frame_equal(result, frame)
示例12: test_default_encoding
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def test_default_encoding(self):
for frame in compat.itervalues(self.frame):
result = frame.to_msgpack()
expected = frame.to_msgpack(encoding='utf8')
assert result == expected
result = self.encode_decode(frame)
assert_frame_equal(result, frame)
示例13: compare
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def compare(data, vf, version):
# py3 compat when reading py2 pickle
try:
data = pandas.read_pickle(vf)
except (ValueError) as e:
if 'unsupported pickle protocol:' in str(e):
# trying to read a py3 pickle in py2
return
else:
raise
m = globals()
for typ, dv in data.items():
for dt, result in dv.items():
try:
expected = data[typ][dt]
except (KeyError):
if version in ('0.10.1', '0.11.0') and dt == 'reg':
break
else:
raise
# use a specific comparator
# if available
comparator = "compare_{typ}_{dt}".format(typ=typ, dt=dt)
comparator = m.get(comparator, m['compare_element'])
comparator(result, expected, typ, version)
return data
示例14: compress_file
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def compress_file(self, src_path, dest_path, compression):
if compression is None:
shutil.copyfile(src_path, dest_path)
return
if compression == 'gzip':
import gzip
f = gzip.open(dest_path, "w")
elif compression == 'bz2':
import bz2
f = bz2.BZ2File(dest_path, "w")
elif compression == 'zip':
import zipfile
zip_file = zipfile.ZipFile(dest_path, "w",
compression=zipfile.ZIP_DEFLATED)
zip_file.write(src_path, os.path.basename(src_path))
elif compression == 'xz':
lzma = pandas.compat.import_lzma()
f = lzma.LZMAFile(dest_path, "w")
else:
msg = 'Unrecognized compression type: {}'.format(compression)
raise ValueError(msg)
if compression != "zip":
with open(src_path, "rb") as fh:
f.write(fh.read())
f.close()
示例15: test_string_io
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import compat [as 别名]
def test_string_io(self):
df = DataFrame(np.random.randn(10, 2))
s = df.to_msgpack(None)
result = read_msgpack(s)
tm.assert_frame_equal(result, df)
s = df.to_msgpack()
result = read_msgpack(s)
tm.assert_frame_equal(result, df)
s = df.to_msgpack()
result = read_msgpack(compat.BytesIO(s))
tm.assert_frame_equal(result, df)
s = to_msgpack(None, df)
result = read_msgpack(s)
tm.assert_frame_equal(result, df)
with ensure_clean(self.path) as p:
s = df.to_msgpack()
fh = open(p, 'wb')
fh.write(s)
fh.close()
result = read_msgpack(p)
tm.assert_frame_equal(result, df)