当前位置: 首页>>代码示例>>Python>>正文


Python compat.OrderedDict方法代码示例

本文整理汇总了Python中pandas.compat.OrderedDict方法的典型用法代码示例。如果您正苦于以下问题:Python compat.OrderedDict方法的具体用法?Python compat.OrderedDict怎么用?Python compat.OrderedDict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.compat的用法示例。


在下文中一共展示了compat.OrderedDict方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_aggregate_str_func

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_aggregate_str_func(tsframe, groupbyfunc):
    grouped = tsframe.groupby(groupbyfunc)

    # single series
    result = grouped['A'].agg('std')
    expected = grouped['A'].std()
    tm.assert_series_equal(result, expected)

    # group frame by function name
    result = grouped.aggregate('var')
    expected = grouped.var()
    tm.assert_frame_equal(result, expected)

    # group frame by function dict
    result = grouped.agg(OrderedDict([['A', 'var'],
                                      ['B', 'std'],
                                      ['C', 'mean'],
                                      ['D', 'sem']]))
    expected = DataFrame(OrderedDict([['A', grouped['A'].var()],
                                      ['B', grouped['B'].std()],
                                      ['C', grouped['C'].mean()],
                                      ['D', grouped['D'].sem()]]))
    tm.assert_frame_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:25,代码来源:test_aggregate.py

示例2: _write_cell

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def _write_cell(self, s, kind='td', indent=0, tags=None):
        if tags is not None:
            start_tag = '<{kind} {tags}>'.format(kind=kind, tags=tags)
        else:
            start_tag = '<{kind}>'.format(kind=kind)

        if self.escape:
            # escape & first to prevent double escaping of &
            esc = OrderedDict([('&', r'&amp;'), ('<', r'&lt;'),
                               ('>', r'&gt;')])
        else:
            esc = {}

        rs = pprint_thing(s, escape_chars=esc).strip()

        if self.render_links and _is_url(rs):
            rs_unescaped = pprint_thing(s, escape_chars={}).strip()
            start_tag += '<a href="{url}" target="_blank">'.format(
                url=rs_unescaped)
            end_a = '</a>'
        else:
            end_a = ''

        self.write(u'{start}{rs}{end_a}</{kind}>'.format(
            start=start_tag, rs=rs, end_a=end_a, kind=kind), indent) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:27,代码来源:html.py

示例3: test_ctor_orderedDict

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_ctor_orderedDict(self):
        keys = list(set(np.random.randint(0, 5000, 100)))[
            :50]  # unique random int  keys
        d = OrderedDict([(k, mkdf(10, 5)) for k in keys])
        p = Panel(d)
        assert list(p.items) == keys

        p = Panel.from_dict(d)
        assert list(p.items) == keys 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:11,代码来源:test_panel.py

示例4: test_more_flexible_frame_multi_function

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_more_flexible_frame_multi_function(df):
    grouped = df.groupby('A')

    exmean = grouped.agg(OrderedDict([['C', np.mean], ['D', np.mean]]))
    exstd = grouped.agg(OrderedDict([['C', np.std], ['D', np.std]]))

    expected = concat([exmean, exstd], keys=['mean', 'std'], axis=1)
    expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)

    d = OrderedDict([['C', [np.mean, np.std]], ['D', [np.mean, np.std]]])
    result = grouped.aggregate(d)

    tm.assert_frame_equal(result, expected)

    # be careful
    result = grouped.aggregate(OrderedDict([['C', np.mean],
                                            ['D', [np.mean, np.std]]]))
    expected = grouped.aggregate(OrderedDict([['C', np.mean],
                                              ['D', [np.mean, np.std]]]))
    tm.assert_frame_equal(result, expected)

    def foo(x):
        return np.mean(x)

    def bar(x):
        return np.std(x, ddof=1)

    # this uses column selection & renaming
    with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
        d = OrderedDict([['C', np.mean],
                         ['D', OrderedDict([['foo', np.mean],
                                            ['bar', np.std]])]])
        result = grouped.aggregate(d)

    d = OrderedDict([['C', [np.mean]], ['D', [foo, bar]]])
    expected = grouped.aggregate(d)

    tm.assert_frame_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:40,代码来源:test_aggregate.py

示例5: test_multi_function_flexible_mix

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_multi_function_flexible_mix(df):
    # GH #1268
    grouped = df.groupby('A')

    # Expected
    d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
                     ['D', {'sum': 'sum'}]])
    # this uses column selection & renaming
    with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
        expected = grouped.aggregate(d)

    # Test 1
    d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
                     ['D', 'sum']])
    # this uses column selection & renaming
    with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
        result = grouped.aggregate(d)
    tm.assert_frame_equal(result, expected)

    # Test 2
    d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
                     ['D', ['sum']]])
    # this uses column selection & renaming
    with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
        result = grouped.aggregate(d)
    tm.assert_frame_equal(result, expected) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:28,代码来源:test_aggregate.py

示例6: _init_dict

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def _init_dict(self, data, axes, dtype=None):
        haxis = axes.pop(self._info_axis_number)

        # prefilter if haxis passed
        if haxis is not None:
            haxis = ensure_index(haxis)
            data = OrderedDict((k, v)
                               for k, v in compat.iteritems(data)
                               if k in haxis)
        else:
            keys = com.dict_keys_to_ordered_list(data)
            haxis = Index(keys)

        for k, v in compat.iteritems(data):
            if isinstance(v, dict):
                data[k] = self._constructor_sliced(v)

        # extract axis for remaining axes & create the slicemap
        raxes = [self._extract_axis(self, data, axis=i) if a is None else a
                 for i, a in enumerate(axes)]
        raxes_sm = self._extract_axes_for_slice(self, raxes)

        # shallow copy
        arrays = []
        haxis_shape = [len(a) for a in raxes]
        for h in haxis:
            v = values = data.get(h)
            if v is None:
                values = np.empty(haxis_shape, dtype=dtype)
                values.fill(np.nan)
            elif isinstance(v, self._constructor_sliced):
                d = raxes_sm.copy()
                d['copy'] = False
                v = v.reindex(**d)
                if dtype is not None:
                    v = v.astype(dtype)
                values = v.values
            arrays.append(values)

        return self._init_arrays(arrays, haxis, [haxis] + raxes) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:42,代码来源:panel.py

示例7: from_dict

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def from_dict(cls, data, intersect=False, orient='items', dtype=None):
        """
        Construct Panel from dict of DataFrame objects.

        Parameters
        ----------
        data : dict
            {field : DataFrame}
        intersect : boolean
            Intersect indexes of input DataFrames
        orient : {'items', 'minor'}, default 'items'
            The "orientation" of the data. If the keys of the passed dict
            should be the items of the result panel, pass 'items'
            (default). Otherwise if the columns of the values of the passed
            DataFrame objects should be the items (which in the case of
            mixed-dtype data you should do), instead pass 'minor'
        dtype : dtype, default None
            Data type to force, otherwise infer

        Returns
        -------
        Panel
        """
        from collections import defaultdict

        orient = orient.lower()
        if orient == 'minor':
            new_data = defaultdict(OrderedDict)
            for col, df in compat.iteritems(data):
                for item, s in compat.iteritems(df):
                    new_data[item][col] = s
            data = new_data
        elif orient != 'items':  # pragma: no cover
            raise ValueError('Orientation must be one of {items, minor}.')

        d = cls._homogenize_dict(cls, data, intersect=intersect, dtype=dtype)
        ks = list(d['data'].keys())
        if not isinstance(d['data'], OrderedDict):
            ks = list(sorted(ks))
        d[cls._info_axis_name] = Index(ks)
        return cls(**d) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:43,代码来源:panel.py

示例8: dict_keys_to_ordered_list

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def dict_keys_to_ordered_list(mapping):
    # when pandas drops support for Python < 3.6, this function
    # can be replaced by a simple list(mapping.keys())
    if PY36 or isinstance(mapping, OrderedDict):
        keys = list(mapping.keys())
    else:
        keys = try_sort(mapping)
    return keys 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:10,代码来源:common.py

示例9: test_ctor_orderedDict

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_ctor_orderedDict(self):
        with catch_warnings(record=True):
            keys = list(set(np.random.randint(0, 5000, 100)))[
                :50]  # unique random int  keys
            d = OrderedDict([(k, mkdf(10, 5)) for k in keys])
            p = Panel(d)
            assert list(p.items) == keys

            p = Panel.from_dict(d)
            assert list(p.items) == keys 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:12,代码来源:test_panel.py

示例10: _dict_keys_to_ordered_list

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def _dict_keys_to_ordered_list(mapping):
    # when pandas drops support for Python < 3.6, this function
    # can be replaced by a simple list(mapping.keys())
    if PY36 or isinstance(mapping, OrderedDict):
        keys = list(mapping.keys())
    else:
        keys = _try_sort(mapping)
    return keys 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:10,代码来源:common.py

示例11: _to_recarray

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def _to_recarray(self, data, columns):
        dtypes = []
        o = compat.OrderedDict()

        # use the columns to "order" the keys
        # in the unordered 'data' dictionary
        for col in columns:
            dtypes.append((str(col), data[col].dtype))
            o[col] = data[col]

        tuples = lzip(*o.values())
        return np.array(tuples, dtypes) 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:14,代码来源:parsers.py

示例12: test_aggregate_str_func

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_aggregate_str_func(self):
        def _check_results(grouped):
            # single series
            result = grouped['A'].agg('std')
            expected = grouped['A'].std()
            assert_series_equal(result, expected)

            # group frame by function name
            result = grouped.aggregate('var')
            expected = grouped.var()
            assert_frame_equal(result, expected)

            # group frame by function dict
            result = grouped.agg(OrderedDict([['A', 'var'], ['B', 'std'],
                                              ['C', 'mean'], ['D', 'sem']]))
            expected = DataFrame(OrderedDict([['A', grouped['A'].var(
            )], ['B', grouped['B'].std()], ['C', grouped['C'].mean()],
                ['D', grouped['D'].sem()]]))
            assert_frame_equal(result, expected)

        by_weekday = self.tsframe.groupby(lambda x: x.weekday())
        _check_results(by_weekday)

        by_mwkday = self.tsframe.groupby([lambda x: x.month,
                                          lambda x: x.weekday()])
        _check_results(by_mwkday) 
开发者ID:securityclippy,项目名称:elasticintel,代码行数:28,代码来源:test_aggregate.py

示例13: test_more_flexible_frame_multi_function

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_more_flexible_frame_multi_function(self):

        grouped = self.df.groupby('A')

        exmean = grouped.agg(OrderedDict([['C', np.mean], ['D', np.mean]]))
        exstd = grouped.agg(OrderedDict([['C', np.std], ['D', np.std]]))

        expected = concat([exmean, exstd], keys=['mean', 'std'], axis=1)
        expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)

        d = OrderedDict([['C', [np.mean, np.std]], ['D', [np.mean, np.std]]])
        result = grouped.aggregate(d)

        assert_frame_equal(result, expected)

        # be careful
        result = grouped.aggregate(OrderedDict([['C', np.mean],
                                                ['D', [np.mean, np.std]]]))
        expected = grouped.aggregate(OrderedDict([['C', np.mean],
                                                  ['D', [np.mean, np.std]]]))
        assert_frame_equal(result, expected)

        def foo(x):
            return np.mean(x)

        def bar(x):
            return np.std(x, ddof=1)

        # this uses column selection & renaming
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            d = OrderedDict([['C', np.mean], ['D', OrderedDict(
                [['foo', np.mean], ['bar', np.std]])]])
            result = grouped.aggregate(d)

        d = OrderedDict([['C', [np.mean]], ['D', [foo, bar]]])
        expected = grouped.aggregate(d)

        assert_frame_equal(result, expected) 
开发者ID:securityclippy,项目名称:elasticintel,代码行数:41,代码来源:test_aggregate.py

示例14: test_multi_function_flexible_mix

# 需要导入模块: from pandas import compat [as 别名]
# 或者: from pandas.compat import OrderedDict [as 别名]
def test_multi_function_flexible_mix(self):
        # GH #1268
        grouped = self.df.groupby('A')

        d = OrderedDict([['C', OrderedDict([['foo', 'mean'], [
            'bar', 'std'
        ]])], ['D', 'sum']])

        # this uses column selection & renaming
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            result = grouped.aggregate(d)

        d2 = OrderedDict([['C', OrderedDict([['foo', 'mean'], [
            'bar', 'std'
        ]])], ['D', ['sum']]])

        # this uses column selection & renaming
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            result2 = grouped.aggregate(d2)

        d3 = OrderedDict([['C', OrderedDict([['foo', 'mean'], [
            'bar', 'std'
        ]])], ['D', {'sum': 'sum'}]])

        # this uses column selection & renaming
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            expected = grouped.aggregate(d3)

        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected) 
开发者ID:securityclippy,项目名称:elasticintel,代码行数:35,代码来源:test_aggregate.py


注:本文中的pandas.compat.OrderedDict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。