本文整理汇总了Python中pandas._libs.lib.values_from_object方法的典型用法代码示例。如果您正苦于以下问题:Python lib.values_from_object方法的具体用法?Python lib.values_from_object怎么用?Python lib.values_from_object使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas._libs.lib
的用法示例。
在下文中一共展示了lib.values_from_object方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _addsub_offset_array
# 需要导入模块: from pandas._libs import lib [as 别名]
# 或者: from pandas._libs.lib import values_from_object [as 别名]
def _addsub_offset_array(self, other, op):
"""
Add or subtract array-like of DateOffset objects
Parameters
----------
other : Index, np.ndarray
object-dtype containing pd.DateOffset objects
op : {operator.add, operator.sub}
Returns
-------
result : same class as self
"""
assert op in [operator.add, operator.sub]
if len(other) == 1:
return op(self, other[0])
warnings.warn("Adding/subtracting array of DateOffsets to "
"{cls} not vectorized"
.format(cls=type(self).__name__), PerformanceWarning)
# For EA self.astype('O') returns a numpy array, not an Index
left = lib.values_from_object(self.astype('O'))
res_values = op(left, np.array(other))
kwargs = {}
if not is_period_dtype(self):
kwargs['freq'] = 'infer'
return self._from_sequence(res_values, **kwargs)
示例2: remove_na_arraylike
# 需要导入模块: from pandas._libs import lib [as 别名]
# 或者: from pandas._libs.lib import values_from_object [as 别名]
def remove_na_arraylike(arr):
"""
Return array-like containing only true/non-NaN values, possibly empty.
"""
if is_extension_array_dtype(arr):
return arr[notna(arr)]
else:
return arr[notna(lib.values_from_object(arr))]
示例3: remove_na_arraylike
# 需要导入模块: from pandas._libs import lib [as 别名]
# 或者: from pandas._libs.lib import values_from_object [as 别名]
def remove_na_arraylike(arr):
"""
Return array-like containing only true/non-NaN values, possibly empty.
"""
return arr[notna(lib.values_from_object(arr))]
示例4: is_bool_indexer
# 需要导入模块: from pandas._libs import lib [as 别名]
# 或者: from pandas._libs.lib import values_from_object [as 别名]
def is_bool_indexer(key):
# type: (Any) -> bool
"""
Check whether `key` is a valid boolean indexer.
Parameters
----------
key : Any
Only list-likes may be considered boolean indexers.
All other types are not considered a boolean indexer.
For array-like input, boolean ndarrays or ExtensionArrays
with ``_is_boolean`` set are considered boolean indexers.
Returns
-------
bool
Raises
------
ValueError
When the array is an object-dtype ndarray or ExtensionArray
and contains missing values.
"""
na_msg = 'cannot index with vector containing NA / NaN values'
if (isinstance(key, (ABCSeries, np.ndarray, ABCIndex)) or
(is_array_like(key) and is_extension_array_dtype(key.dtype))):
if key.dtype == np.object_:
key = np.asarray(values_from_object(key))
if not lib.is_bool_array(key):
if isna(key).any():
raise ValueError(na_msg)
return False
return True
elif is_bool_dtype(key.dtype):
# an ndarray with bool-dtype by definition has no missing values.
# So we only need to check for NAs in ExtensionArrays
if is_extension_array_dtype(key.dtype):
if np.any(key.isna()):
raise ValueError(na_msg)
return True
elif isinstance(key, list):
try:
arr = np.asarray(key)
return arr.dtype == np.bool_ and len(arr) == len(key)
except TypeError: # pragma: no cover
return False
return False