当前位置: 首页>>代码示例>>Python>>正文


Python pandas.DateOffset方法代码示例

本文整理汇总了Python中pandas.DateOffset方法的典型用法代码示例。如果您正苦于以下问题:Python pandas.DateOffset方法的具体用法?Python pandas.DateOffset怎么用?Python pandas.DateOffset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas的用法示例。


在下文中一共展示了pandas.DateOffset方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setup

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def setup(self):
        """Runs before every method to create a clean testing setup"""
        # Load a test instrument
        self.testInst = pysat.Instrument()
        self.testInst.data = pds.DataFrame({'Kp': np.arange(0, 4, 1.0/3.0),
                                            'ap_nan': np.full(shape=12, \
                                                            fill_value=np.nan),
                                            'ap_inf': np.full(shape=12, \
                                                            fill_value=np.inf)},
                                           index=[pysat.datetime(2009, 1, 1)
                                                  + pds.DateOffset(hours=3*i)
                                                  for i in range(12)])
        self.testInst.meta = pysat.Meta()
        self.testInst.meta.__setitem__('Kp', {self.testInst.meta.fill_label:
                                              np.nan})
        self.testInst.meta.__setitem__('ap_nan', {self.testInst.meta.fill_label:
                                                  np.nan})
        self.testInst.meta.__setitem__('ap_inv', {self.testInst.meta.fill_label:
                                                  np.inf})

        # Load a test Metadata
        self.testMeta = pysat.Meta() 
开发者ID:pysat,项目名称:pysat,代码行数:24,代码来源:test_sw.py

示例2: test_calc_f107a_high_rate

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_calc_f107a_high_rate(self):
        """ Test the calc_f107a routine with sub-daily data"""
        self.testInst.data = pds.DataFrame({'f107': np.linspace(70, 200,
                                                                3840)},
                                           index=[pysat.datetime(2009, 1, 1)
                                                  + pds.DateOffset(hours=i)
                                                  for i in range(3840)])
        sw_f107.calc_f107a(self.testInst, f107_name='f107', f107a_name='f107a')

        # Assert that new data and metadata exist
        assert 'f107a' in self.testInst.data.columns
        assert 'f107a' in self.testInst.meta.keys()

        # Assert the values are finite and realistic means
        assert np.all(np.isfinite(self.testInst['f107a']))
        assert self.testInst['f107a'].min() > self.testInst['f107'].min()
        assert self.testInst['f107a'].max() < self.testInst['f107'].max()

        # Assert the same mean value is used for a day
        assert len(np.unique(self.testInst['f107a'][:24])) == 1 
开发者ID:pysat,项目名称:pysat,代码行数:22,代码来源:test_sw.py

示例3: test_calc_f107a_daily_missing

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_calc_f107a_daily_missing(self):
        """ Test the calc_f107a routine with some daily data missing"""

        self.testInst.data = pds.DataFrame({'f107': np.linspace(70, 200, 160)},
                                           index=[pysat.datetime(2009, 1, 1)
                                                  + pds.DateOffset(days=2*i+1)
                                                  for i in range(160)])
        sw_f107.calc_f107a(self.testInst, f107_name='f107', f107a_name='f107a')

        # Assert that new data and metadata exist
        assert 'f107a' in self.testInst.data.columns
        assert 'f107a' in self.testInst.meta.keys()

        # Assert the finite values have realistic means
        assert(np.nanmin(self.testInst['f107a'])
               > np.nanmin(self.testInst['f107']))
        assert(np.nanmax(self.testInst['f107a'])
               < np.nanmax(self.testInst['f107']))

        # Assert the expected number of fill values
        assert(len(self.testInst['f107a'][np.isnan(self.testInst['f107a'])])
               == 40) 
开发者ID:pysat,项目名称:pysat,代码行数:24,代码来源:test_sw.py

示例4: setup

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def setup(self):
        """Runs before every method to create a clean testing setup."""
        info = {'index': 'mlt'}
        self.testInst = pysat.Instrument('pysat', 'testing',
                                         clean_level='clean',
                                         orbit_info=info)
        times = [[pysat.datetime(2008, 12, 31, 4),
                  pysat.datetime(2008, 12, 31, 5, 37)],
                 [pysat.datetime(2009, 1, 1),
                  pysat.datetime(2009, 1, 1, 1, 37)]
                 ]
        for seconds in np.arange(38):
            day = pysat.datetime(2009, 1, 2) + \
                pds.DateOffset(days=int(seconds))
            times.append([day, day +
                          pds.DateOffset(hours=1, minutes=37,
                                         seconds=int(seconds)) -
                          pds.DateOffset(seconds=20)])

        self.testInst.custom.add(filter_data2, 'modify', times=times) 
开发者ID:pysat,项目名称:pysat,代码行数:22,代码来源:test_orbits.py

示例5: test_single_adding_custom_function_wrong_times

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_single_adding_custom_function_wrong_times(self):
        """Only the data at the correct time should be accepted, otherwise it
        returns nan
        """
        def custom1(inst):
            new_index = inst.index+pds.DateOffset(milliseconds=500)
            d = pds.Series(2.0 * inst['mlt'], index=new_index)
            d.name = 'doubleMLT'
            print(new_index)
            return d

        self.add(custom1, 'add')
        self.testInst.load(2009, 1)
        ans = (self.testInst['doubleMLT'].isnull()).all()
        if self.testInst.pandas_format:
            assert ans
        else:
            print("Warning! Xarray doesn't enforce the same times on all " +
                  "parameters in dataset.") 
开发者ID:pysat,项目名称:pysat,代码行数:21,代码来源:test_custom.py

示例6: _apply_loffset

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def _apply_loffset(self, result):
        """
        If loffset is set, offset the result index.

        This is NOT an idempotent routine, it will be applied
        exactly once to the result.

        Parameters
        ----------
        result : Series or DataFrame
            the result of resample
        """

        needs_offset = (
            isinstance(self.loffset, (DateOffset, timedelta,
                                      np.timedelta64)) and
            isinstance(result.index, DatetimeIndex) and
            len(result.index) > 0
        )

        if needs_offset:
            result.index = result.index + self.loffset

        self.loffset = None
        return result 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:27,代码来源:resample.py

示例7: test_dt64_with_offset_array

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_dt64_with_offset_array(klass, assert_func):
    # GH#10699
    # array of offsets
    box = Series if klass is Series else pd.Index
    with tm.assert_produces_warning(PerformanceWarning):
        s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')])
        result = s + box([pd.offsets.DateOffset(years=1),
                          pd.offsets.MonthEnd()])
        exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29')])
        assert_func(result, exp)

        # same offset
        result = s + box([pd.offsets.DateOffset(years=1),
                          pd.offsets.DateOffset(years=1)])
        exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')])
        assert_func(result, exp) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:18,代码来源:test_arithmetic.py

示例8: test_select_has_data

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_select_has_data():
    algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3))

    s = bt.Strategy('s')

    dts = pd.date_range('2010-01-01', periods=10)
    data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)
    data['c1'].ix[dts[0]] = np.nan
    data['c1'].ix[dts[1]] = np.nan

    s.setup(data)
    s.update(dts[2])

    assert algo(s)
    selected = s.temp['selected']
    assert len(selected) == 1
    assert 'c2' in selected 
开发者ID:pmorissette,项目名称:bt,代码行数:19,代码来源:test_algos.py

示例9: test_select_has_data_preselected

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_select_has_data_preselected():
    algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3))

    s = bt.Strategy('s')

    dts = pd.date_range('2010-01-01', periods=3)
    data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)
    data['c1'].ix[dts[0]] = np.nan
    data['c1'].ix[dts[1]] = np.nan

    s.setup(data)
    s.update(dts[2])
    s.temp['selected'] = ['c1']

    assert algo(s)
    selected = s.temp['selected']
    assert len(selected) == 0 
开发者ID:pmorissette,项目名称:bt,代码行数:19,代码来源:test_algos.py

示例10: test_weigh_erc

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_weigh_erc(mock_erc):
    algo = algos.WeighERC(lookback=pd.DateOffset(days=5))

    mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7})

    s = bt.Strategy('s')

    dts = pd.date_range('2010-01-01', periods=5)
    data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)

    s.setup(data)
    s.update(dts[4])
    s.temp['selected'] = ['c1', 'c2']

    assert algo(s)
    assert mock_erc.called
    rets = mock_erc.call_args[0][0]
    assert len(rets) == 4
    assert 'c1' in rets
    assert 'c2' in rets

    weights = s.temp['weights']
    assert len(weights) == 2
    assert weights['c1'] == 0.3
    assert weights['c2'] == 0.7 
开发者ID:pmorissette,项目名称:bt,代码行数:27,代码来源:test_algos.py

示例11: test_weigh_mean_var

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_weigh_mean_var(mock_mv):
    algo = algos.WeighMeanVar(lookback=pd.DateOffset(days=5))

    mock_mv.return_value = pd.Series({'c1': 0.3, 'c2': 0.7})

    s = bt.Strategy('s')

    dts = pd.date_range('2010-01-01', periods=5)
    data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)

    s.setup(data)
    s.update(dts[4])
    s.temp['selected'] = ['c1', 'c2']

    assert algo(s)
    assert mock_mv.called
    rets = mock_mv.call_args[0][0]
    assert len(rets) == 4
    assert 'c1' in rets
    assert 'c2' in rets

    weights = s.temp['weights']
    assert len(weights) == 2
    assert weights['c1'] == 0.3
    assert weights['c2'] == 0.7 
开发者ID:pmorissette,项目名称:bt,代码行数:27,代码来源:test_algos.py

示例12: test_select_momentum

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_select_momentum():
    algo = algos.SelectMomentum(n=1, lookback=pd.DateOffset(days=3))

    s = bt.Strategy('s')

    dts = pd.date_range('2010-01-01', periods=3)
    data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)
    data['c1'].ix[dts[2]] = 105
    data['c2'].ix[dts[2]] = 95

    s.setup(data)
    s.update(dts[2])
    s.temp['selected'] = ['c1', 'c2']

    assert algo(s)
    actual = s.temp['selected']
    assert len(actual) == 1
    assert 'c1' in actual 
开发者ID:pmorissette,项目名称:bt,代码行数:20,代码来源:test_algos.py

示例13: apply_time_offset

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def apply_time_offset(time, years=0, months=0, days=0, hours=0):
    """Apply a specified offset to the given time array.

    This is useful for GFDL model output of instantaneous values.  For example,
    3 hourly data postprocessed to netCDF files spanning 1 year each will
    actually have time values that are offset by 3 hours, such that the first
    value is for 1 Jan 03:00 and the last value is 1 Jan 00:00 of the
    subsequent year.  This causes problems in xarray, e.g. when trying to group
    by month.  It is resolved by manually subtracting off those three hours,
    such that the dates span from 1 Jan 00:00 to 31 Dec 21:00 as desired.

    Parameters
    ----------
    time : xarray.DataArray representing a timeseries
    years, months, days, hours : int, optional
        The number of years, months, days, and hours, respectively, to offset
        the time array by.  Positive values move the times later.

    Returns
    -------
    pandas.DatetimeIndex

    Examples
    --------
    Case of a length-1 input time array:

    >>> times = xr.DataArray(datetime.datetime(1899, 12, 31, 21))
    >>> apply_time_offset(times)
    Timestamp('1900-01-01 00:00:00')

    Case of input time array with length greater than one:

    >>> times = xr.DataArray([datetime.datetime(1899, 12, 31, 21),
    ...                       datetime.datetime(1899, 1, 31, 21)])
    >>> apply_time_offset(times) # doctest: +NORMALIZE_WHITESPACE
    DatetimeIndex(['1900-01-01', '1899-02-01'], dtype='datetime64[ns]',
                  freq=None)
    """
    return (pd.to_datetime(time.values) +
            pd.DateOffset(years=years, months=months, days=days, hours=hours)) 
开发者ID:spencerahill,项目名称:aospy,代码行数:42,代码来源:times.py

示例14: test_apply_time_offset

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def test_apply_time_offset():
    start = datetime.datetime(1900, 5, 10)
    years, months, days, hours = -2, 1, 7, 3
    # test lengths 0, 1, and >1 of input time array
    for periods in range(3):
        times = pd.date_range(start=start, freq='M', periods=periods)
        times = pd.to_datetime(times.values)  # Workaround for pandas bug
        actual = apply_time_offset(xr.DataArray(times), years=years,
                                   months=months, days=days, hours=hours)
        desired = (times + pd.DateOffset(
            years=years, months=months, days=days, hours=hours
        ))
        assert actual.identical(desired) 
开发者ID:spencerahill,项目名称:aospy,代码行数:15,代码来源:test_utils_times.py

示例15: get_dataset

# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import DateOffset [as 别名]
def get_dataset(src, name, distribution):
    df = src[src.airport == name].copy()
    del df['airport']
    df['date'] = pd.to_datetime(df.date)
    # timedelta here instead of pd.DateOffset to avoid pandas bug < 0.18 (Pandas issue #11925)
    df['left'] = df.date - datetime.timedelta(days=0.5)
    df['right'] = df.date + datetime.timedelta(days=0.5)
    df = df.set_index(['date'])
    df.sort_index(inplace=True)
    if distribution == 'Smoothed':
        window, order = 51, 3
        for key in STATISTICS:
            df[key] = savgol_filter(df[key], window, order)

    return ColumnDataSource(data=df) 
开发者ID:binder-examples,项目名称:bokeh,代码行数:17,代码来源:main.py


注:本文中的pandas.DateOffset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。